login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081254 Numbers k such that A081252(m)/m^2 has a local maximum for m = k. 16
1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1706, 3413, 6826, 13653, 27306, 54613, 109226, 218453, 436906, 873813, 1747626, 3495253, 6990506, 13981013, 27962026, 55924053, 111848106, 223696213, 447392426, 894784853, 1789569706, 3579139413 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The limit of the local maxima, lim_{m->inf} A081252(m)/m^2 = 1/10. For local minima cf. A081253.

Row sums of the triangle A181971. - Reinhard Zumkeller, Jul 09 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Thomas Baruchel, Properties of the cumulated deficient binary digit sum, arXiv:1908.02250 [math.NT], 2019.

Klaus Brockhaus, Illustration for A053646, A081252, A081253 and A081254

FORMULA

a(n) = floor(2^(n-1)*5/3). [corrected by Michel Marcus, Sep 21 2018]

a(n) = a(n-2) + 5*2^(n-3) for n > 2;

a(n+2) - a(n) = A020714(n-1);

a(n) + a(n-1) = A052549(n-1) for n > 1;

a(2*n+1) = A020989(n); a(2n) = A072197(n-1);

a(n+1) - a(n) = A048573(n-1).

G.f.: -(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)).

a(n) = 5*2^(n-1)/3 + (-1)^n/6-1/2. a(n) = 2*a(n-1) + (1+(-1)^n)/2, a(1)=1. - Paul Barry, Mar 24 2003

a(2n) = 2*a(2*n-1) + 1, a(2*n+1) = 2*a(2*n), a(1)=1. a(n) = A000975(n-1) + 2^(n-1). - Philippe Deléham, Oct 15 2006

a(n) = A005578(n) + A000225(n-1). - Yuchun Ji, Sep 21 2018

EXAMPLE

13 is a term since A081252(12)/12^2 = 15/144 = 0.104, A081252(13)/13^2 = 18/169 = 0.107, A081252(14)/14^2 = 20/196 = 0.102.

MAPLE

seq(floor(2^(n-1)*5/3), n=1..35); # Muniru A Asiru, Sep 20 2018

MATHEMATICA

Rest@CoefficientList[Series[-(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)), {x, 0, 32}], x] (* Vincenzo Librandi, Apr 04 2012 *)

a[n_]:=Floor[2^(n-1)*5/3]; Array[a, 33, 1] (* Stefano Spezia, Sep 01 2018 *)

PROG

(MAGMA) [Floor(2^(n-1)*5/3): n in [1..40]]; // Vincenzo Librandi, Apr 04 2012

(PARI) a(n) = 2^(n-1)*5\3; \\ Altug Alkan, Sep 21 2018

CROSSREFS

Cf. A000975, A020714, A020989, A048573, A052549, A053646, A072197, A081252, A081253.

Sequence in context: A265385 A019300 A072762 * A125049 A267581 A320733

Adjacent sequences:  A081251 A081252 A081253 * A081255 A081256 A081257

KEYWORD

nonn,changed

AUTHOR

Klaus Brockhaus, Mar 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)