login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140966 (5+(-2)^n)/3. 9
2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Inverse binomial transform of A048573.

This is an example of the case k= -1 of sequences with recurrences a(n)=k*a(n-1)+(k+3)*a(n-2)-(2k+2)*a(n-3).

The case k=1 is covered for example by A097163, A135520, A136326, A136336, or A137208.

Sequences with k=2 are A094554 and A094555.

Sequences with k=3 are A084175, A108924, and A139818.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1,2).

FORMULA

a(n)=-a(n-1)+2*a(n-2).

G.f.: (2+3*x)/((1-x)*(1+2*x)).

a(n+1)-a(n) = (-1)^(n+1)*A000079(n).

a(n+3) = (-1)^n*A083582(n).

a(n+1) -2*a(n) = -a(n+2).

a(n+1) -3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1).

a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014

PROG

(MAGMA) [( 5+(-2)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011

(PARI) a(n)=(5+(-2)^n)/3 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Sequence in context: A277640 A165401 A213074 * A058036 A136179 A185176

Adjacent sequences:  A140963 A140964 A140965 * A140967 A140968 A140969

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Jul 27 2008

EXTENSIONS

Definition simplified by R. J. Mathar, Sep 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 03:53 EST 2017. Contains 294912 sequences.