login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179080 Number of partitions of n into distinct parts where all differences between consecutive parts are odd. 3
1, 1, 1, 2, 1, 3, 2, 4, 2, 6, 4, 7, 5, 9, 8, 12, 10, 14, 15, 17, 19, 22, 26, 26, 32, 32, 42, 40, 52, 48, 66, 59, 79, 73, 98, 89, 118, 108, 143, 133, 170, 160, 204, 194, 241, 236, 286, 283, 336, 339, 396, 407, 464, 483, 544, 575, 634, 681, 740, 803, 862, 944, 1001, 1110, 1162, 1296, 1348, 1512, 1561, 1760, 1805 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). - Joerg Arndt, Jan 29 2011

a(n) = A179049(n) + A218355(n). - Joerg Arndt, Oct 27 2012

EXAMPLE

From Joerg Arndt, Oct 27 2012:  (Start)

The a(18) = 15 such partitions of 18 are:

[ 1]  1 2 3 12

[ 2]  1 2 5 10

[ 3]  1 2 7 8

[ 4]  1 2 15

[ 5]  1 4 5 8

[ 6]  1 4 13

[ 7]  1 6 11

[ 8]  1 8 9

[ 9]  2 3 4 9

[10]  2 3 6 7

[11]  3 4 5 6

[12]  3 4 11

[13]  3 6 9

[14]  5 6 7

[15]  18

(End)

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, 1,

      `if`(i<1, 0, b(n, i-1, t)+`if`(i<=n and irem(i, 2)<>t,

       b(n-i, i-1, irem(i, 2)), 0)))

    end:

a:= n-> `if`(n=0, 1, add(b(n-i, i-1, irem(i, 2)), i=1..n)):

seq(a(n), n=0..100);  # Alois P. Heinz, Nov 08 2012

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Mar 24 2015, after Alois P. Heinz *)

PROG

(Sage)

def A179080(n):

    odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x))

    satisfies = lambda p: not p or odd_diffs(p)

    return Partitions(n, max_slope=-1).filter(satisfies).cardinality()

[A179080(n) for n in range(0, 20)] # show first terms

(PARI) N=66; x='x+O('x^N); gf = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); Vec( gf ) /* Joerg Arndt, Jan 29 2011 */

CROSSREFS

Cf. A179049 (odd differences and odd minimal part).

Cf. A189357 (even differences, distinct parts), A096441 (even differences).

Cf. A000009 (partitions of 2*n with even differences and even minimal part).

Sequence in context: A130722 A147541 A024162 * A294199 A078658 A185314

Adjacent sequences:  A179077 A179078 A179079 * A179081 A179082 A179083

KEYWORD

nonn

AUTHOR

Joerg Arndt, Jan 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 17:56 EST 2017. Contains 294894 sequences.