This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179080 Number of partitions of n into distinct parts where all differences between consecutive parts are odd. 3
 1, 1, 1, 2, 1, 3, 2, 4, 2, 6, 4, 7, 5, 9, 8, 12, 10, 14, 15, 17, 19, 22, 26, 26, 32, 32, 42, 40, 52, 48, 66, 59, 79, 73, 98, 89, 118, 108, 143, 133, 170, 160, 204, 194, 241, 236, 286, 283, 336, 339, 396, 407, 464, 483, 544, 575, 634, 681, 740, 803, 862, 944, 1001, 1110, 1162, 1296, 1348, 1512, 1561, 1760, 1805 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). - Joerg Arndt, Jan 29 2011 a(n) = A179049(n) + A218355(n). - Joerg Arndt, Oct 27 2012 EXAMPLE From Joerg Arndt, Oct 27 2012:  (Start) The a(18) = 15 such partitions of 18 are: [ 1]  1 2 3 12 [ 2]  1 2 5 10 [ 3]  1 2 7 8 [ 4]  1 2 15 [ 5]  1 4 5 8 [ 6]  1 4 13 [ 7]  1 6 11 [ 8]  1 8 9 [ 9]  2 3 4 9 [10]  2 3 6 7 [11]  3 4 5 6 [12]  3 4 11 [13]  3 6 9 [14]  5 6 7 [15]  18 (End) MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1,       `if`(i<1, 0, b(n, i-1, t)+`if`(i<=n and irem(i, 2)<>t,        b(n-i, i-1, irem(i, 2)), 0)))     end: a:= n-> `if`(n=0, 1, add(b(n-i, i-1, irem(i, 2)), i=1..n)): seq(a(n), n=0..100);  # Alois P. Heinz, Nov 08 2012 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *) PROG (Sage) def A179080(n):     odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x))     satisfies = lambda p: not p or odd_diffs(p)     return Partitions(n, max_slope=-1).filter(satisfies).cardinality() [A179080(n) for n in range(0, 20)] # show first terms (PARI) N=66; x='x+O('x^N); gf = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); Vec( gf ) /* Joerg Arndt, Jan 29 2011 */ CROSSREFS Cf. A179049 (odd differences and odd minimal part). Cf. A189357 (even differences, distinct parts), A096441 (even differences). Cf. A000009 (partitions of 2*n with even differences and even minimal part). Sequence in context: A130722 A147541 A024162 * A294199 A078658 A185314 Adjacent sequences:  A179077 A179078 A179079 * A179081 A179082 A179083 KEYWORD nonn AUTHOR Joerg Arndt, Jan 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.