login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253412 Number of n-bit legal binary words with maximal set of 1s. 5
1, 2, 2, 4, 4, 7, 9, 13, 18, 25, 36, 49, 70, 97, 137, 191, 268, 376, 526, 738, 1033, 1449, 2029, 2844, 3985, 5584, 7825, 10964, 15365, 21529, 30169, 42274, 59238, 83008, 116316, 162991, 228393, 320041, 448462, 628417, 880580, 1233929, 1729066, 2422885, 3395113, 4757463 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

An n-bit binary word is legal if every 1 has an adjacent 0.

The set of 1s is maximal if changing any 0 to a 1 makes the word illegal. For example, a maximal word cannot contain 000, 0100, or 0010, and cannot start or end with 00. - Andrew Woods, Jan 02 2015

In other words, the number of minimal dominating sets in the n-path graph P_n. - Eric W. Weisstein, Jul 24 2017

LINKS

Andrew Woods, Table of n, a(n) for n = 1..100

M. L. Gargano, A. Weisenseel, J. Malerba and M. Lewinter, Discrete Renyi parking constants, 36th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, 2005, Congr. Numer. 176 (2005) 43-48.

Eric Weisstein's World of Mathematics, Minimal Dominating Set

Eric Weisstein's World of Mathematics, Path Graph

Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).

FORMULA

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6), for n >= 6, with a(1) = 1, a(2) = a(3) = 2, a(4) = a(5) = 4, a(6) = 7. - Andrew Woods, Jan 02 2015

G.f.: x*(1 + 2*x + x^2 + x^3 - x^4 - x^5) / (1 - x^2 - x^3 - x^4 + x^6). - Paul D. Hanna, Jan 02 2015

a(n) = sqrt(A303072(n)). - Eric W. Weisstein, Apr 18 2018

EXAMPLE

The only legal words with maximal set of 1s are:

0 if n = 1;

01 & 10 if n = 2;

010 & 101 if n = 3;

0110, 1001, 0101 & 1010 if n = 4;

01010, 01101, 10101 & 10110 if n = 5; and

010101, 010110, 011001, 011010, 100110, 101010 & 101101 if n = 6.

MATHEMATICA

LinearRecurrence[{0, 1, 1, 1, 0, -1}, {1, 2, 2, 4, 4, 7}, 50] (* Harvey P. Dale, May 08 2017 *)

CoefficientList[Series[(1 + 2 x + x^2 + x^3 - x^4 - x^5)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 24 2017 *)

Table[RootSum[1 - #^2 - #^3 - #^4 + #^6 &, 9 #^n - 18 #^(n + 2) + 23 #^(n + 3) - 3 #^(n + 4) + 32 #^(n + 5) &]/229, {n, 20}] (* Eric W. Weisstein, Aug 04 2017 *)

PROG

(Python)

def A253412(n):

....c, fs = 0, '0'+str(n)+'b'

....for i in range(2**n):

........s = '01'+format(i, fs)+'10'

........for j in range(n):

............if s[j:j+4] == '0100' or s[j+1:j+5] == '0010' or s[j+1:j+4] == '000' or s[j+1:j+4] == '111':

................break

........else:

............c += 1

....return c # Chai Wah Wu, Jan 02 2015

CROSSREFS

Asymmetric analog of A000931 (no consecutive 1s but maximal).

Linear analog of A253413.

Cf. A303072.

Sequence in context: A183566 A222709 A034396 * A291148 A032190 A222737

Adjacent sequences:  A253409 A253410 A253411 * A253413 A253414 A253415

KEYWORD

nonn

AUTHOR

Steven Finch, Dec 31 2014

EXTENSIONS

Terms a(21) and beyond from Andrew Woods, Jan 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 04:18 EST 2019. Contains 320371 sequences. (Running on oeis4.)