login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072547 Main diagonal of the array in which first column and row are filled alternatively with 1's or 0's and then T(i,j)=T(i-1,j)+T(i,j-1). 11
1, 0, 2, 6, 22, 80, 296, 1106, 4166, 15792, 60172, 230252, 884236, 3406104, 13154948, 50922986, 197519942, 767502944, 2987013068, 11641557716, 45429853652, 177490745984, 694175171648, 2717578296116, 10648297329692, 41757352712480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A Catalan transform of A078008 under the mapping g(x)->g(xc(x)). - Paul Barry, Nov 13 2004

a(n) = A108561(2*(n-1),n-1). - Reinhard Zumkeller, Jun 10 2005

Number of positive terms in expansion of (x_1+x_2+...+x_{n-1}-x_n)^n. - Sergio Falcon, Feb 08 2007

Hankel transform is A088138(n+1). - Paul Barry, Feb 17 2009

Without the beginning "1", we obtain the first diagonal over the principal diagonal of the array notified by B. Cloitre in A026641 and used by R. Choulet in A172025, and from A172061 to A172066. - Richard Choulet, Jan 25 2010

Also central terms of triangles A108561 and A112465. - Reinhard Zumkeller, Jan 03 2014

REFERENCES

L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

David Anderson, ES Egge, M Riehl, L Ryan, R Steinke, Y Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv preprint arXiv:1605.06825, 2016

Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015. [It is only a conjecture that this is the same sequence. It would be nice to have a proof.]

Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.

S. B. Ekhad, M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)

FORMULA

If offset is 0, a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - Vladeta Jovovic, Feb 18 2003

G.f.: x*(1-x*C)/(1-2*x*C)/(1+x*C), where C = (1-(1-4*x)^(1/2))/x/2 is g.f. for Catalan numbers (A000108). - Vladeta Jovovic, Feb 18 2003

a(n) = sum(binomial(2n-2j-4, n-3), j=0..floor((n-1)/2)). - Emeric Deutsch, Jan 28 2004

a(n) = (-1)^n*sum{k=0..n, C(-n,k)} (offset 0). - Paul Barry, Feb 17 2009

Other form of the G.f: f(z)=(2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^(-1). - Richard Choulet, Jan 25 2010

Conjecture: 2*(-n+1)*a(n) +(9*n-17)*a(n-1) +(-3*n+19)*a(n-2) +2*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Nov 30 2012

a(n) = [x^n] ((1 - x)^2/(1 - 2*x))^n. Exp( Sum_{n >= 1} a(n+1)*x^n/n ) = 1 + x^2 + 2*x^3 + 6*x^4 + 18*x^5 + ... is the o.g.f for A000957. - Peter Bala, Oct 01 2015

EXAMPLE

The array begins:

1 0 1 0 1..

0 0 1 1 2..

1 1 2 3 5..

0 1 3 6 11..

MAPLE

taylor( (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^(-1), z=0, 42); for n from -1 to 40 do a(n):=sum('(-1)^(p)*binomial(2n-p+1, 1+n-p)', p=0..n+1): od:seq(a(n), n=-1..40):od; # Richard Choulet, Jan 25 2010

MATHEMATICA

CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x]) /(2*x))^(-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

PROG

(Haskell)

a072547 n = a108561 (2 * (n - 1)) (n - 1)

-- Reinhard Zumkeller, Jan 03 2014

(PARI) a(n) = (-1)^n*sum(k=0, n, binomial(-n, k));

vector(100, n, a(n-1)) \\ Altug Alkan, Oct 02 2015

CROSSREFS

Cf. A014300, A026641, A092785, A000957.

Cf. A026641, A172025, A172061, A172062, A172063, A172064, A172065, A172066. - Richard Choulet, Jan 25 2010

Sequence in context: A203038 A206304 A201372 * A150229 A150230 A191755

Adjacent sequences:  A072544 A072545 A072546 * A072548 A072549 A072550

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Aug 05 2002

EXTENSIONS

Corrected and extended by Vladeta Jovovic, Feb 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 17:32 EDT 2017. Contains 290651 sequences.