login
A253223
T(n,k) = number of n X k nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
7
0, 0, 0, 1, 0, 1, 3, 1, 1, 3, 6, 9, 1, 9, 6, 10, 25, 19, 19, 25, 10, 15, 49, 102, 19, 102, 49, 15, 21, 81, 263, 268, 268, 263, 81, 21, 28, 121, 504, 1249, 268, 1249, 504, 121, 28, 36, 169, 825, 3140, 3568, 3568, 3140, 825, 169, 36, 45, 225, 1226, 5986, 16028, 3568, 16028
OFFSET
1,7
LINKS
Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 21.
Robert Dougherty-Bliss and Manuel Kauers, Hardinian Arrays, arXiv:2309.00487 [math.CO], 2023.Hardinian Arrays, El. J. Combinat. 31 (2) (2024) #P2.9
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1.
k=2: a(n) = 4*n^2 - 20*n + 25 for n>2.
k=3: a(n) = 40*n^2 - 279*n + 497 for n>4.
k=4: a(n) = 480*n^2 - 4354*n + 10098 for n>6.
k=5: a(n) = 6400*n^2 - 71990*n + 206573 for n>8.
k=6: a(n) = 90112*n^2 - 1212288*n + 4150790 for n>10.
k=7: a(n) = 1306624*n^2 - 20460244*n + 81385043 for n>12.
EXAMPLE
Table starts:
..0...0....1.....3......6......10......15.......21........28........36
..0...0....1.....9.....25......49......81......121.......169.......225
..1...1....1....19....102.....263.....504......825......1226......1707
..3...9...19....19....268....1249....3140.....5986......9792.....14558
..6..25..102...268....268....3568...16028....40238.....77063....126673
.10..49..263..1249...3568....3568...47698...213155....538444...1039060
.15..81..504..3140..16028...47698...47698...649712...2913793...7415837
.21.121..825..5986..40238..213155..649712...649712...9023385..40680959
.28.169.1226..9792..77063..538444.2913793..9023385...9023385.127419681
.36.225.1707.14558.126673.1039060.7415837.40680959.127419681.127419681
Some solutions for n=4 and k=4:
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CROSSREFS
Column 1 is A000217(n-2).
Column 2 is A016754(n-3).
Sequence in context: A365968 A156710 A114588 * A121745 A252983 A089312
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 29 2014
STATUS
approved