login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308352
Number of k-ary quasitrivial semigroups that have no neutral element on an n-element set.
2
0, 2, 8, 58, 492, 5074, 60888, 835482, 12895796, 221169970, 4172486496, 85872215290, 1914575169756, 45970251182418, 1182618181384424, 32451961380002458, 946163712877067460, 29208900504551394610, 951798961321369842864, 32647628386008050898810
OFFSET
1,2
COMMENTS
Number of k-ary associative and quasitrivial operations that have no neutral element on an n-element set.
LINKS
M. Couceiro, J. Devillet All quasitrivial n-ary semigroups are reducible to semigroups, arXiv:1904.05968 [math.RA], 2019.
Jimmy Devillet, Miguel Couceiro, Characterizations and enumerations of classes of quasitrivial n-ary semigroups, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).
FORMULA
a(n) = A292932(n) - n*A292932(n-1) = A292932(n) - A292933(n) for n >= 1.
a(n) ~ n! * (4-r) / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019
E.g.f.: (1 - x)/(x + 3 - 2*exp(x)). - Andrew Howroyd, Aug 19 2019
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[(1 - x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)
PROG
(PARI) seq(n)={Vec(-1+serlaplace((1-x)/(x+3-2*exp(x))) + O(x*x^n), -n)} \\ Andrew Howroyd, Aug 19 2019
CROSSREFS
Sequence in context: A229529 A007347 A027257 * A185898 A063074 A319590
KEYWORD
nonn,easy
AUTHOR
J. Devillet, May 21 2019
STATUS
approved