OFFSET
2,3
COMMENTS
Catalan transform of A034299. - R. J. Mathar, Jun 29 2009
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..1000
David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv:1605.06825 [math.CO], 2016.
Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} k*A105640(n,k).
G.f.: x*(1 + 5*x - (1-x)*sqrt(1-4*x))/(2*(2+x)^2*sqrt(1-4*x)).
a(n+2) = A126258(2*n,n). - Philippe Deléham, Mar 13 2007
a(n) ~ 2^(2*n-1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence +2*(-n+1)*a(n) +3*(-n+6)*a(n-1) +3*(13*n-44)*a(n-2) +10*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(4)=5 because in the 6 (=A000957(5)) hill-free Dyck paths of semilength 4, namely UU(UUDD)DD, UUUDUDDD, UUD(UUDD)D, UUDUDUDD, U(UUDD)UDD and (UUDD)(UUDD) (U=(1,1), D=(1,-1)) we have altogether 5 UUDD's (shown between parentheses).
MAPLE
G:=z*(1+5*z-(1-z)*sqrt(1-4*z))/2/(2+z)^2/sqrt(1-4*z): Gser:=series(G, z=0, 31): seq(coeff(Gser, z^n), n=2..28);
MATHEMATICA
Rest[Rest[CoefficientList[Series[x*(1+5*x-(1-x)*Sqrt[1-4*x])/2/(2+x)^2/Sqrt[1-4*x], {x, 0, 40}], x]]] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(x*(1+5*x-(1-x)*sqrt(1-4*x))/(2*(2+x)^2 *sqrt(1-4*x))) \\ G. C. Greubel, Feb 08 2017
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( x*(1 + 5*x-(1-x)*Sqrt(1-4*x))/(2*(2+x)^2*Sqrt(1-4*x)) )); // G. C. Greubel, May 08 2019
(Sage) a=(x*(1+5*x-(1-x)*sqrt(1-4*x))/(2*(2+x)^2*sqrt(1-4*x))).series(x, 40).coefficients(x, sparse=False); a[2:] # G. C. Greubel, May 08 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 08 2006
STATUS
approved