login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098012 Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i). 4
2, 3, 6, 5, 15, 30, 7, 35, 105, 210, 11, 77, 385, 1155, 2310, 13, 143, 1001, 5005, 15015, 30030, 17, 221, 2431, 17017, 85085, 255255, 510510, 19, 323, 4199, 46189, 323323, 1616615, 4849845, 9699690, 23, 437, 7429, 96577, 1062347, 7436429, 37182145, 111546435, 223092870 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017

LINKS

Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened

FORMULA

n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014

EXAMPLE

2

3 3*2

5 5*3 5*3*2

7 7*5 7*5*3 7*5*3*2

Or, as an infinite square array:

     2     3     5     7  ... : row 1 = A000040,

     6    15    35    77  ... : row 2 = A006094,

    30   105   385  1001  ... : row 3 = A046301,

   210  1155  5005 17017  ... : row 4 = A046302,

   ..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - M. F. Hasler, May 03 2017

MAPLE

T:=(n, k)->mul(ithprime(n-i), i=0..k-1): seq(seq(T(n, k), k=1..n), n=1..9); # Muniru A Asiru, Mar 16 2019

MATHEMATICA

Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)

PROG

(Haskell)

a098012 n k = a098012_tabl !! (n-1) !! (k-1)

a098012_row n = a098012_tabl !! (n-1)

a098012_tabl = map (scanl1 (*)) a104887_tabl

-- Reinhard Zumkeller, Oct 02 2014

(PARI) T098012(n, k)=prod(i=0, k-1, prime(n-i)) \\ "Triangle" variant

A098012(m, n)=prod(i=0, m-1, prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017

(GAP) P:=Filtered([1..200], IsPrime);;

T:=Flat(List([1..9], n->List([1..n], k->Product([0..k-1], i->P[n-i])))); # Muniru A Asiru, Mar 16 2019

CROSSREFS

Cf. A000040, A002110, A006094, A046301, A046302, A046303.

Cf. A060381 (central terms), A104887, A248147.

Sequence in context: A066449 A276942 A255483 * A066117 A222311 A156833

Adjacent sequences:  A098009 A098010 A098011 * A098013 A098014 A098015

KEYWORD

easy,nonn,tabl

AUTHOR

Alford Arnold, Sep 09 2004

EXTENSIONS

More terms from Robert G. Wilson v, Sep 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 05:19 EDT 2019. Contains 326318 sequences. (Running on oeis4.)