OFFSET
1,1
COMMENTS
Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
FORMULA
n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014
EXAMPLE
MAPLE
T:=(n, k)->mul(ithprime(n-i), i=0..k-1): seq(seq(T(n, k), k=1..n), n=1..9); # Muniru A Asiru, Mar 16 2019
MATHEMATICA
Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)
PROG
(Haskell)
a098012 n k = a098012_tabl !! (n-1) !! (k-1)
a098012_row n = a098012_tabl !! (n-1)
a098012_tabl = map (scanl1 (*)) a104887_tabl
-- Reinhard Zumkeller, Oct 02 2014
(PARI) T098012(n, k)=prod(i=0, k-1, prime(n-i)) \\ "Triangle" variant
A098012(m, n)=prod(i=0, m-1, prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017
(GAP) P:=Filtered([1..200], IsPrime);;
T:=Flat(List([1..9], n->List([1..n], k->Product([0..k-1], i->P[n-i])))); # Muniru A Asiru, Mar 16 2019
CROSSREFS
KEYWORD
AUTHOR
Alford Arnold, Sep 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 21 2004
STATUS
approved