|
|
A046301
|
|
Product of 3 successive primes.
|
|
26
|
|
|
30, 105, 385, 1001, 2431, 4199, 7429, 12673, 20677, 33263, 47027, 65231, 82861, 107113, 146969, 190747, 241133, 290177, 347261, 409457, 478661, 583573, 716539, 871933, 1009091, 1113121, 1201289, 1317919, 1564259, 1879981, 2279269, 2494633, 2837407, 3127361, 3532343
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = A242187. - Amiram Eldar, Nov 19 2020
|
|
EXAMPLE
|
From K. D. Bajpai, Aug 27 2014: (Start)
a(2) = 105 is in the sequence because 105 = 3* 5 * 7, product of three successive primes.
a(3) = 385 is in the sequence because 385 = 5 * 7 * 11, product of three successive primes.
(End)
|
|
MAPLE
|
A046301:=n->ithprime(n)*ithprime(n+1)*ithprime(n+2): seq(A028560(n), n=1..100); # K. D. Bajpai, Aug 27 2014
|
|
MATHEMATICA
|
Table[Prime[n] Prime[n+1] Prime[n+2], {n, 50}] (* K. D. Bajpai, Aug 27 2014 *)
Times@@@Partition[Prime[Range[40]], 3, 1] (* Harvey P. Dale, Mar 25 2019 *)
|
|
PROG
|
(MAGMA) [NthPrime(n)*NthPrime(n+1)*NthPrime(n+2): n in [1..31]]; /* Or: */ [&*[ NthPrime(n+k): k in [0..2] ]: n in [1..31] ]; // Bruno Berselli, Feb 25 2011
(PARI) a(n)=prime(n)*prime(n+1)*prime(n+2); \\ Joerg Arndt, Aug 30 2014
(Haskell)
a046301 n = a046301_list !! (n-1)
a046301_list = zipWith3 (((*) .) . (*))
a000040_list (tail a000040_list) (drop 2 a000040_list)
-- Reinhard Zumkeller, May 12 2015
|
|
CROSSREFS
|
Cf. A002110, A006094, A046302, A046303, A046324, A046325, A046326, A046327.
Cf. A000040, A242187, A257891.
Sequence in context: A081370 A257891 A158445 * A193873 A266955 A205836
Adjacent sequences: A046298 A046299 A046300 * A046302 A046303 A046304
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Patrick De Geest, Jun 15 1998
|
|
EXTENSIONS
|
Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012
|
|
STATUS
|
approved
|
|
|
|