login
A046301
Product of 3 successive primes.
28
30, 105, 385, 1001, 2431, 4199, 7429, 12673, 20677, 33263, 47027, 65231, 82861, 107113, 146969, 190747, 241133, 290177, 347261, 409457, 478661, 583573, 716539, 871933, 1009091, 1113121, 1201289, 1317919, 1564259, 1879981, 2279269, 2494633, 2837407, 3127361, 3532343
OFFSET
1,1
LINKS
Vincenzo Librandi and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
FORMULA
Sum_{n>=1} 1/a(n) = A242187. - Amiram Eldar, Nov 19 2020
EXAMPLE
From K. D. Bajpai, Aug 27 2014: (Start)
a(2) = 105 is in the sequence because 105 = 3* 5 * 7, product of three successive primes.
a(3) = 385 is in the sequence because 385 = 5 * 7 * 11, product of three successive primes.
(End)
MAPLE
A046301:=n->ithprime(n)*ithprime(n+1)*ithprime(n+2): seq(A028560(n), n=1..100); # K. D. Bajpai, Aug 27 2014
MATHEMATICA
Table[Prime[n] Prime[n+1] Prime[n+2], {n, 50}] (* K. D. Bajpai, Aug 27 2014 *)
Times@@@Partition[Prime[Range[40]], 3, 1] (* Harvey P. Dale, Mar 25 2019 *)
PROG
(Magma) [NthPrime(n)*NthPrime(n+1)*NthPrime(n+2): n in [1..31]]; /* Or: */ [&*[ NthPrime(n+k): k in [0..2] ]: n in [1..31] ]; // Bruno Berselli, Feb 25 2011
(PARI) a(n)=prime(n)*prime(n+1)*prime(n+2); \\ Joerg Arndt, Aug 30 2014
(Haskell)
a046301 n = a046301_list !! (n-1)
a046301_list = zipWith3 (((*) .) . (*))
a000040_list (tail a000040_list) (drop 2 a000040_list)
-- Reinhard Zumkeller, May 12 2015
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012
STATUS
approved