login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001013 Jordan-Polya numbers: products of factorial numbers A000142.
(Formerly M0993 N0372)
24
1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2304, 2592, 2880, 3072, 3456, 3840, 4096, 4320, 4608, 5040, 5184, 5760 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Possible orders of automorphism groups of trees.

Except for the numbers 2, 9 and 10 this sequence is conjectured to be the same as A034878.

Equivalently, a(n)/6*(6x^2-6x+(6x-3)a(n)+2a(n)^2+1) = N^2 has an integer solution. - Ralf Stephan, Dec 04 2004

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, B23.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..987

Robert A. Melter, Autometrized unary algebras, J. Combinatorial Theory 5 1968 21-29.

Eric Weisstein's World of Mathematics, Factorial Products

Index entries for sequences related to trees

EXAMPLE

864 = (3!)^2*4!.

MAPLE

N:= 10000: # get all terms <= N

S:= {1}:

for k from 2 do

  kf:= k!;

  if kf > N then break fi;

  S := S union {seq(seq(kf^j * s, j = 1 .. floor(log[kf](N/s))), s=S)};

od:

S;   # if using Maple 11 or earlier, uncomment the next line:

# sort(convert(S, list));

# Robert Israel, Sep 09 2014

MATHEMATICA

For[p=0; a=f=Table[n!, {n, 1, 8}], p=!=a, p=a; a=Select[Union@@Outer[Times, f, a], #<=8!&]]; a

PROG

(Sage)

# For the function 'prod_hull' see A246663.

prod_hull(factorial, 5760) # Peter Luschny, Sep 09 2014

CROSSREFS

Cf. A034878.

Sequence in context: A096850 A062847 * A115746 A025610 A242101 A131117

Adjacent sequences:  A001010 A001011 A001012 * A001014 A001015 A001016

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms, formula from Christian G. Bower, Dec 15 1999

Edited by Dean Hickerson, Sep 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 23 02:24 EDT 2014. Contains 248411 sequences.