This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A017817 a(0)=1, a(1)=a(2)=0, a(3)=1; a(n) = a(n-3) + a(n-4). 15
 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 2, 4, 6, 5, 6, 10, 11, 11, 16, 21, 22, 27, 37, 43, 49, 64, 80, 92, 113, 144, 172, 205, 257, 316, 377, 462, 573, 693, 839, 1035, 1266, 1532, 1874, 2301, 2798, 3406, 4175, 5099, 6204, 7581, 9274, 11303, 13785, 16855, 20577, 25088 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=3, I={0,1}. - Vladimir Baltic, Mar 07 2012 Number of compositions (ordered partitions) of n into parts 3 and 4. LINKS Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics 4 (2010), 119-135 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 484 Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3 E. Wilson, The Scales of Mt. Meru Index entries for linear recurrences with constant coefficients, signature (0,0,1,1). FORMULA G.f.: 1/(1-x^3-x^4). a(n)/a(n-1) tends to A060007. - Gary W. Adamson, Oct 22 2006 MATHEMATICA a=b=c=0; d=1; lst={d}; Do[AppendTo[lst, e=a+b]; a=b; b=c; c=d; d=e, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 28 2010 *) PROG (PARI) a(n)=polcoeff(if(n<0, (1+x)/(1+x-x^4), 1/(1-x^3-x^4))+x*O(x^abs(n)), abs(n)) CROSSREFS A003269(n) = a(-4-n)(-1)^n. Sequence in context: A247749 A247367 A127838 * A284834 A279677 A262180 Adjacent sequences:  A017814 A017815 A017816 * A017818 A017819 A017820 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.