login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054727 Number of forests of rooted trees with n nodes on a circle without crossing edges. 7
1, 2, 7, 33, 181, 1083, 6854, 45111, 305629, 2117283, 14929212, 106790500, 773035602, 5652275723, 41683912721, 309691336359, 2315772552485, 17415395593371, 131632335068744, 999423449413828, 7618960581522348, 58295017292748756, 447517868947619432, 3445923223190363608 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

P. Flajolet and M. Noy, Analytic Combinatorics of Noncrossing Configurations, Discrete Math. 204 (1999), 203-229.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.

F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).

Source

Philippe Flajolet, Enumeration of planar configurations in computational geometry

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 486, 502

Samuele Giraudo, Combalgebraic structures on decorated cliques, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.

FORMULA

a(n) = Sum_{j=1..n} binomial(n, j-1) * binomial(3*n-2*j-1, n-j) / (2*n - j).

G.f. A(x) satisfies 2*A(x)^2=x*(1-sqrt(1-4*A(x)))*(1-A(x)). - Vladimir Kruchinin, Nov 25 2011

From Peter Bala, Nov 07 2015: (Start)

O.g.f. A(x) = revert(x/((1 + x)*C(x))), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.

Row sums of A094021. (End)

Conjecture: -2(37*n-80) *(n-1) *(2*n-1) *a(n) +2*(592*n^3-3056*n^2+5045*n-2665) *a(n-1) +2*(148*n^3-986*n^2+2021*n-1255) *a(n-2) -5*(n-5) *(n-2) *(37*n-43) *a(n-3)=0. - R. J. Mathar, Apr 30 2018

a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 8.2246915409778560686084627753... is the real root of the equation 5 - 8*d - 32*d^2 + 4*d^3 = 0 and c = 0.07465927842190452347018812862935237... is the positive real root of the equation -125 + 22376*c^2 + 8880*c^4 + 592*c^6 = 0. - Vaclav Kotesovec, Apr 30 2018

MAPLE

ZZ:=[F, {F=Union(Epsilon, ZB), ZB=Prod(Z1, P), P=Sequence(B), B=Prod(P, Z1, P), Z1=Prod(Z, F)}, unlabeled]: seq(count(ZZ, size=n), n=1..20); # Zerinvary Lajos, Apr 22 2007

MATHEMATICA

a[n_] := (3*n-3)!/((n-1)!*(2*n-1)!)*HypergeometricPFQ[{1-2*n, 1-n, -n}, {3/2 - 3*n/2, 2 - 3*n/2}, -1/4]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 05 2012, after formula *)

PROG

(PARI) N=33; x='x+O('x^N); Vec(serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 25 2016

CROSSREFS

Row sums of A094021.

Cf. A006013, A000108.

Sequence in context: A214954 A055724 A301433 * A086618 A224769 A302285

Adjacent sequences:  A054724 A054725 A054726 * A054728 A054729 A054730

KEYWORD

nonn,easy

AUTHOR

Philippe Flajolet, Apr 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 20:51 EDT 2018. Contains 315243 sequences. (Running on oeis4.)