OFFSET
0,2
COMMENTS
The definition of the Stirling-Frobenius subset numbers of order m is in A225468.
From Wolfdieter Lang, Apr 09 2017: (Start)
This is the Sheffer triangle (exp(2*x), exp(3*x) - 1), denoted by S2[3,2]. See also A282629 for S2[3,1]. The stirling2 triangle A048993 is in this notation denoted by S2[1,0].
The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/A006233(n) (Cauchy numbers of the first kind). For a- and z-sequences for Sheffer triangles see the W. Lang link under A006232, also with references).
The first column k sequences divided by 3^k are A000079, A016127, A016297, A025999. For the e.g.f.s and o.g.f.s see below.
This triangle appears in the o.g.f. G(n, x) of the sequence {(2 + 3*m)^n}_{m>=0}, as G(n, x) = Sum_{k=0..n} T(n, k)*k!*x^k/(1-x)^(k+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0} (2 + 3*m)^n t^m/m! = exp(t)*Sum_{k=0..n} T(n, k)*t^k.
The corresponding Eulerian number triangle is A225117(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, m)*m!, 0 <= k <= n. (End)
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
Peter Luschny, Eulerian polynomials.
Peter Luschny, The Stirling-Frobenius numbers.
Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.
FORMULA
T(n, k) = (1/k!)*Sum_{j=0..n} binomial(j, n-k)*A_3(n, j) where A_m(n, j) are the generalized Eulerian numbers A225117.
For a recurrence see the Maple program.
From Wolfdieter Lang, Apr 09 2017: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*(-1)^(j-k)*(2 + 3*j)^n/k!, 0 <= k <= n.
E.g.f. of triangle: exp(2*z)*exp(x*(exp(3*z)-1)) (Sheffer type).
E.g.f. for sequence of column k is exp(2*x)*((exp(3*x) - 1)^k)/k! (Sheffer property).
O.g.f. for sequence of column k is 3^k*x^k/Product_{j=0..k} (1 - (2+3*j)*x).
A nontrivial recurrence for the column m=0 entries T(n, 0) = 2^n from the z-sequence given above: T(n,0) = n*Sum_{k=0..n-1} z(k)*T(n-1,k), n >= 1, T(0, 0) = 1.
The corresponding recurrence for columns k >= 1 from the a-sequence is T(n, k) = (n/k)* Sum_{j=0..n-k} binomial(k-1+j, k-1)*a(j)*T(n-1, k-1+j).
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+2) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
(End)
Boas-Buck recurrence for column sequence m: T(n, k) = (1/(n - m))*[(n/2)*(4 + 3*m)*T(n-1, k) + m* Sum_{p=m..n-2} binomial(n, p)(-3)^(n-p)*Bernoulli(n-p)*T(p, k)], for n > k >= 0, with input T(k, k) = 3^k. See a comment and references in A282629, An example is given below. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 2, 3,
[2] 4, 21, 9,
[3] 8, 117, 135, 27,
[4] 16, 609, 1431, 702, 81,
[5] 32, 3093, 13275, 12015, 3240, 243,
[6] 64, 15561, 115479, 171990, 81405, 13851, 729,
[7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.
Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2))] = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)
MAPLE
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SS(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n-k) for j in (0..n))/ factorial(k)
def A225466(n): return SF_SS(n, k, 3)
(PARI) T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "); ); print(); ) \\ Indranil Ghosh, Apr 10 2017
(Python)
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, May 08 2013
STATUS
approved