login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028859 a(n+2) = 2*a(n+1) + 2*a(n). 32
1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of words of length n without adjacent 0's from the alphabet {0,1,2}. For example, a(2) counts 01,02,10,11,12,20,21,22. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 12 2001

Individually, both this sequence and A002605 are convergents to 1+sqrt(3). Mutually, both sequences are convergents to 2+sqrt(3) and 1+sqrt(3)/2.- Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Nov 04 2001

Add a loop at two vertices of the graph C_3=K_3. A028859(n) counts walks of length n+1 between these vertices. - Paul Barry, Oct 15 2004

Prefaced with a 1 as (1 + x + 3x^2 + 8x^3 + 22x^4 + ...) = 1 / (1 - x - 2x^2 - 3x^3 - 5x^4 - 8x^5 - 13x^6 - 21x^7 - ...). - Gary W. Adamson, Jul 28 2009

Equals row 2 of the array in A180165, and the INVERTi transform of A125145. [From Gary W. Adamson, Aug 14 2010]

Pisano period lengths: 1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1,144, 9,180, 24,.... - R. J. Mathar, Aug 10 2012

REFERENCES

C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci Numbers of Generalized Zykov Sums, Journal of Integer Sequences, Vol. 15, 2012, #12.7.8.

Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.

P. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, Journal of Integer Sequences, 10 (2007), Article 07.2.8.

S. J. Cyvin and I. Gutman, Kekule structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).

David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.5.

Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011; http://repository.wit.ie/1693/1/AoifeThesis.pdf

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Joerg Arndt, Matters Computational (The Fxtbook), section 14.9 "Strings with no two consecutive zeros", pp.318-320.

Tanya Khovanova, Recursive Sequences

Index to sequences with linear recurrences with constant coefficients, signature (2,2).

FORMULA

a(n) = a(n-1) + A052945(n) = A002605(n) + A002605(n-1); generating function = -(x+1)/(2*x^2+2*x-1).

a(n)=[(1+sqrt(3))^(n+2)-(1-sqrt(3))^(n+2)]/(4*sqrt(3)). - Emeric Deutsch, Feb 01 2005

If p[i]=fibonacci(i+1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. [From Milan Janjic, May 08 2010]

a(n) = 3^n - A186244(n). - Toby Gottfried, Mar 07 2013

MAPLE

a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n], n=0..24); (Deutsch)

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 3}, {1, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)

PROG

(Haskell)

a028859 n = a028859_list !! n

a028859_list =

   1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))

-- Reinhard Zumkeller, Oct 15 2011

(PARI) a(n)=([1, 3; 1, 1]^n*[2; 1])[2, 1] \\ Charles R Greathouse IV, Mar 27 2012

CROSSREFS

Cf. A180165, A125145, A026150, A030195, A080040, A083337, A106435, A108898.

Cf. A155020 (same sequence with term 1 prepended).

Sequence in context: A055887 A024581 * A155020 A014397 A048503 A200752

Adjacent sequences:  A028856 A028857 A028858 * A028860 A028861 A028862

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 22 00:15 EDT 2014. Contains 247035 sequences.