login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190248 a(n) = [nu+nv+nw]-[nu]-[nv]-[nw], where u=(1+sqrt(5))/2, v=u^2, w=u^3, []=floor. 5
1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) = A190440(n) - A078588(n). This follows from substituting w = 1+2u, v = 1+u, and taking 2n, n and n out of the floor functions. - Michel Dekking, Oct 21 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [2n+4nu]-[nu]-[n+nu]-[n+2nu], where u=(1+sqrt(5))/2. - Michel Dekking, Oct 21 2016

MATHEMATICA

u = GoldenRatio; v = u^2; w=u^3;

f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]

t = Table[f[n], {n, 1, 120}] (*A190248*)

Flatten[Position[t, 0]]      (*A190249*)

Flatten[Position[t, 1]]      (*A190250*)

Flatten[Position[t, 2]]      (*A190251*)

PROG

(PARI) for(n=1, 30, print1(floor(2*n*(2+sqrt(5))) - floor(n*(1+sqrt(5))/2) - floor(n*(3 + sqrt(5))/2) - floor(n*(2 + sqrt(5))), ", ")) \\ G. C. Greubel, Dec 26 2017

(MAGMA) [Floor(2*n*(2+Sqrt(5))) - Floor(n*(1+Sqrt(5))/2) - Floor(n*(3 + Sqrt(5))/2): n in [1..30]]; // G. C. Greubel, Dec 26 2017

CROSSREFS

Cf. A190249, A190250, A190251.

Sequence in context: A109294 A132966 A037897 * A054070 A293461 A255482

Adjacent sequences:  A190245 A190246 A190247 * A190249 A190250 A190251

KEYWORD

nonn,changed

AUTHOR

Clark Kimberling, May 06 2011

EXTENSIONS

Name corrected by Michel Dekking, Oct 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 23:31 EDT 2019. Contains 327207 sequences. (Running on oeis4.)