login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116523 a(0)=1, a(1)=1, a(n) = 17*a(n/2) for n=2,4,6,..., a(n) = 16*a((n-1)/2) + a((n+1)/2) for n=3,5,7,.... 1
0, 1, 17, 33, 289, 305, 561, 817, 4913, 4929, 5185, 5441, 9537, 9793, 13889, 17985, 83521, 83537, 83793, 84049, 88145, 88401, 92497, 96593, 162129, 162385, 166481, 170577, 236113, 240209, 305745, 371281, 1419857, 1419873, 1420129, 1420385 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A 17-divide version of A084230.

The Harborth : f(2^k)=3^k suggests that a family of sequences of the form: f(2^k)=Prime[n]^k There does indeed seem to be an infinite family of such functions.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.

Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant

FORMULA

a(n) = Sum_{k=0..n-1} 16^wt(k), where wt = A000120. - Mike Warburton, Mar 22 2019

MAPLE

a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 17*a(n/2) else 16*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n), n=0..38);

MATHEMATICA

b[0] := 0; b[1] := 1; b[n_?EvenQ] := b[n] = 17*b[n/2]; b[n_?OddQ] := b[n] = 16*b[(n - 1)/2] + b[(n + 1)/2]; a = Table[b[n], {n, 1, 25}]

CROSSREFS

Cf. A000120, A006046, A077465, A084230.

Sequence in context: A158057 A249356 A286679 * A168579 A135637 A040272

Adjacent sequences:  A116520 A116521 A116522 * A116524 A116525 A116526

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Mar 15 2006

EXTENSIONS

Edited by N. J. A. Sloane, Apr 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 08:39 EDT 2019. Contains 325096 sequences. (Running on oeis4.)