login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039622 Number of n X n Young tableaux. 9
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of arrangements of 1,2,..,n^2 in an n X n matrix such that each row and each column is increasing.

Factor g_n in formula for 2n-th moment of Riemann zeta function on the critical line. (See Conrey article.) - Michael Somos, Apr 15 2003

Number of linear extensions of the n X n lattice. - Mitch Harris, Dec 27, 2005

REFERENCES

The problem for a 5 X 5 array was recently posed and solved in the College Mathematics Journal. The solution is in Vol. 30 (1999), no. 5, pp. 410-411.

J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.

J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.

M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..20

J. B. Conrey, The Riemann Hypothesis

P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function

Index entries for sequences related to Young tableaux.

FORMULA

a(n) = (n^2)! / (product k=1, ..., 2n-1 k^(n - |n-k|)).

a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=n.

a(n) = A088020(n)/A107254(n) = A088020(n)*A000984(n)/A079478(n). - Henry Bottomley, May 14 2005

a(n) = A153452(prime(n)^n). - Naohiro Nomoto, Jan 01 2009

EXAMPLE

Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.

MAPLE

a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):

seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2012

MATHEMATICA

a[n_] := (n^2)!*Product[ k!/(n + k)!, {k, 0, n - 1}]; Table[ a[n], {n, 0, 9}] (* Jean-Fran├žois Alcover, Dec 06 2011, after Pari *)

PROG

(PARI) a(n)=if(n<0, 0, (n^2)!*prod(k=0, n-1, k!/(n+k)!))

CROSSREFS

Main diagonal of A060854. a(2)=A000108(2), a(3)=A005789(3), a(4)=A005790(4), a(5)=A005791(5).

Sequence in context: A193272 A193273 A182192 * A130506 A052078 A069544

Adjacent sequences:  A039619 A039620 A039621 * A039623 A039624 A039625

KEYWORD

nonn,nice,easy

AUTHOR

Floor van Lamoen (fvlamoen(AT)hotmail.com)

EXTENSIONS

References, correction and extension from Stephen G. Penrice (spenrice(AT)ets.org), Jun 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 12:47 EST 2014. Contains 252321 sequences.