login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039622 Number of n X n Young tableaux. 9
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of arrangements of 1,2,..,n^2 in an n X n matrix such that each row and each column is increasing.

Factor g_n in formula for 2n-th moment of Riemann zeta function on the critical line. (See Conrey article.) - Michael Somos, Apr 15 2003

Number of linear extensions of the n X n lattice. - Mitch Harris, Dec 27, 2005

REFERENCES

The problem for a 5 X 5 array was recently posed and solved in the College Mathematics Journal. The solution is in Vol. 30 (1999), no. 5, pp. 410-411.

J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.

J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.

M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..20

J. B. Conrey, The Riemann Hypothesis

P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function

Index entries for sequences related to Young tableaux.

FORMULA

a(n) = (n^2)! / (product k=1, ..., 2n-1 k^(n - |n-k|)).

a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=n.

a(n) = A088020(n)/A107254(n) = A088020(n)*A000984(n)/A079478(n). - Henry Bottomley, May 14 2005

a(n) = A153452(prime(n)^n). - Naohiro Nomoto, Jan 01 2009

EXAMPLE

Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.

MAPLE

a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1):

seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2012

MATHEMATICA

a[n_] := (n^2)!*Product[ k!/(n + k)!, {k, 0, n - 1}]; Table[ a[n], {n, 0, 9}] (* Jean-Fran├žois Alcover, Dec 06 2011, after Pari *)

PROG

(PARI) a(n)=if(n<0, 0, (n^2)!*prod(k=0, n-1, k!/(n+k)!))

CROSSREFS

Main diagonal of A060854. a(2)=A000108(2), a(3)=A005789(3), a(4)=A005790(4), a(5)=A005791(5).

Sequence in context: A193272 A193273 A182192 * A130506 A052078 A069544

Adjacent sequences:  A039619 A039620 A039621 * A039623 A039624 A039625

KEYWORD

nonn,nice,easy

AUTHOR

Floor van Lamoen (fvlamoen(AT)hotmail.com)

EXTENSIONS

References, correction and extension from Stephen G. Penrice (spenrice(AT)ets.org), Jun 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 1 09:41 EDT 2014. Contains 246289 sequences.