The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182512 a(n) = (16^n - 1)/5. 4
 0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Even bisection of A015521 and also A112627. All of the terms are divisible by 3, even terms by 17. LINKS Robert Israel, Table of n, a(n) for n = 0..830 E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013. - From N. J. A. Sloane, Feb 28 2013 E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84 Index entries for linear recurrences with constant coefficients, signature (17,-16) FORMULA a(n) = 16*a(n-1) + 3 where a(0)=0. a(n) = A015521(2n), n=0,1,2... a(n) = A112627(2n), n=1,2,3... and a(0)=0. G.f.: 3*x / ( (16*x-1)*(x-1) ). - R. J. Mathar, Apr 20 2015 a(n) = 3*A131865(n-1). - R. J. Mathar, Apr 20 2015 MAPLE seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016 MATHEMATICA (16^Range[0, 20]-1)/5 (* or *) LinearRecurrence[{17, -16}, {0, 3}, 20] (* Harvey P. Dale, Aug 07 2019 *) PROG (MAGMA)[(1/5)*2^(4*i) -(1/5): i in [0..30]]; (PARI) a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016 CROSSREFS Cf. A015521, A112627. Sequence in context: A232453 A248341 A145242 * A075869 A307369 A126685 Adjacent sequences:  A182509 A182510 A182511 * A182513 A182514 A182515 KEYWORD nonn,easy AUTHOR Brad Clardy, May 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 02:22 EST 2020. Contains 338699 sequences. (Running on oeis4.)