This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080645 a(1) = 1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "for n>1, if n is a member of the sequence then a(n) is even". 0
 1, 2, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585 LINKS B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2. B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308) FORMULA a(1)=1, a(2)=2, a(3)=4; then for k>=1, abs(j)<=2^k: a(3*2^k+j)=4*2^k+3/2*j+abs(j)/2. {a(a(n))} = {1, 2, 2i, i >= 3}. CROSSREFS Cf. A080639, A080640, A079000. Essentially the same as A007378. Sequence in context: A216345 A026510 A138204 * A024413 A153347 A153167 Adjacent sequences:  A080642 A080643 A080644 * A080646 A080647 A080648 KEYWORD nonn,easy AUTHOR N. J. A. Sloane and Benoit Cloitre, Feb 28 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 17 12:39 EDT 2018. Contains 300557 sequences. (Running on oeis4.)