login
A207569
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1).
5
1, 1, 3, 18, 151, 1640, 21825, 343763, 6253234, 128993019, 2975165831, 75866604098, 2119310099700, 64361149952242, 2111222815441491, 74391641880144734, 2802300974537717340, 112379709083552152423, 4780136025081921948194, 214954914688567198802759
OFFSET
0,3
COMMENTS
Compare g.f. to Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1), which is the g.f. of A179525.
Compare g.f. to Sum_{n>=0} Product_{k=1..n} (1 - (1 - x)^(2*k-1)), which is the g.f. of A158691. - Peter Bala, Dec 04 2020
LINKS
Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
a(n) ~ sqrt(12) * 24^n * n^n / (exp(n+Pi^2/48) * Pi^(2*n+1)). - Vaclav Kotesovec, May 06 2014
G.f.: 1/2*( 1 + Sum_{n>=0} (1 + x)^(2*n+1) * Product_{k = 1..n} ((1 + x)^(2*k-1) - 1) ). Cf. A053250 and A215066. - Peter Bala, May 15 2017
Conjectural g.f.: Sum_{n>=0} (-1)^n*Product_{k = 1..n} 1 + ( -1/(1 + x) )^k. - Peter Bala, Dec 04 2020
From Peter Bala, Jan 29 2021: (Start)
Conjectural g.f.s: Sum_{n >= 0} (-1)^n*(1 + x)^(n+1)*Product_{k = 1..n} (1 + (-1)^k*(1 + x)^k)^2. Also
(1/2)*( 1 + Sum_{n >= 0} 1/(1 + x)^(n+1)*Product_{k = 1..n} (1 + (-1)^k/(1 + x)^k) ). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 151*x^4 + 1640*x^5 + 21825*x^6 + ...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^3-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)*((1+x)^7-1) + ...
MATHEMATICA
CoefficientList[Series[Sum[Product[(1+x)^(2*k-1)-1, {k, 1, n}], {n, 0, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, May 06 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, (1+x)^(2*k-1)-1) +x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Feb 18 2012
STATUS
approved