The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108235 Number of partitions of {1,2,...,3n} into n triples (X,Y,Z) each satisfying X+Y=Z. 10
 1, 1, 0, 0, 8, 21, 0, 0, 3040, 20505, 0, 0, 10567748, 103372655, 0, 0, 142664107305, 1836652173363, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(0)=1 by convention. LINKS Matthias Beck and Thomas Zaslavsky, Six Little Squares and How their Numbers Grow, Journal of Integer Sequences, 13 (2010), #10.6.2. R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.] Wikipedia, Dancing Links FORMULA a(n) = 0 unless n == 0 or 1 (mod 4). For n == 0 or 1 (mod 4), a(n) = A002849(3n). See A002849 for references and further information. EXAMPLE For m = 1 the unique solution is 1 + 2 = 3. For m = 4 there are 8 solutions:   1  5  6 | 1  5  6 | 2  5  7 | 1  6  7   2  8 10 | 3  7 10 | 3  6  9 | 4  5  9   4  7 11 | 2  9 11 | 1 10 11 | 3  8 11   3  9 12 | 4  8 12 | 4  8 12 | 2 10 12   --------+---------+---------+--------   2  4  6 | 2  6  8 | 3  4  7 | 3  5  8   1  9 10 | 4  5  9 | 1  8  9 | 2  7  9   3  8 11 | 3  7 10 | 5  6 11 | 4  6 10   5  7 12 | 1 11 12 | 2 10 12 | 1 11 12 . The 8 solutions for m = 4, one per line:   (1,  5,  6), (2,  8, 10), (3,  9, 12), (4,  7, 11);   (1,  5,  6), (2,  9, 11), (3,  7, 10), (4,  8, 12);   (1, 10, 11), (2,  5,  7), (3,  6,  9), (4,  8, 12);   (1,  6,  7), (2, 10, 12), (3,  8, 11), (4,  5,  9);   (1,  9, 10), (2,  4,  6), (3,  8, 11), (5,  7, 12);   (1, 11, 12), (2,  6,  8), (3,  7, 10), (4,  5,  9);   (1,  8,  9), (2, 10, 12), (3,  4,  7), (5,  6, 11);   (1, 11, 12), (2,  7,  9), (3,  5,  8), (4,  6, 10). MATHEMATICA Table[Length[Select[Subsets[Select[Subsets[Range[3 n], {3}], #[[1]] + #[[2]] == #[[3]] &], {n}], Range[3 n] == Sort[Flatten[#]] &]], {n, 0, 5}]  (* Suitable only for n<6. See Knuth's Dancing Links algorithm for n>5. *) (* Robert Price, Apr 03 2019 *) PROG (Sage) A = lambda n:sum(1 for t in DLXCPP([(a-1, b-1, a+b-1) for a in (1..3*n) for b in (1..min(3*n-a, a-1))])) # Tomas Boothby, Oct 11 2013 CROSSREFS Cf. A002848, A002849, A161826, A202951, A202952. Sequence in context: A060668 A221067 A217018 * A130021 A003864 A182602 Adjacent sequences:  A108232 A108233 A108234 * A108236 A108237 A108238 KEYWORD nonn,more AUTHOR N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt and others. EXTENSIONS a(12) from R. H. Hardin, Feb 11 2010 a(12) confirmed and a(13) computed (using Knuth's dancing links algorithm) by Alois P. Heinz, Feb 11 2010 a(13) confirmed by Tomas Boothby, Oct 11 2013 a(16) from Frank Niedermeyer, Apr 19 2020 a(17)-a(19) from Frank Niedermeyer, May 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 22:11 EST 2020. Contains 338684 sequences. (Running on oeis4.)