login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110609 a(n) = n * C(2*n,n-1). 3
0, 1, 8, 45, 224, 1050, 4752, 21021, 91520, 393822, 1679600, 7113106, 29953728, 125550100, 524190240, 2181340125, 9051563520, 37467344310, 154754938800, 637982011590, 2625648168000, 10789623755820, 44277560801760, 181478535620850, 742984788858624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Second column of number triangle A110608.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = n^2*binomial(2*n, n)/(n+1) = n^2*A000108(n) = A002736(n)/(n+1).

G.f.: -((2*x*(2*x+2*sqrt(1-4*x)-3) - sqrt(1-4*x) + 1)/(2*sqrt((1 - 4*x)^3)* x^2)). - Marco A. Cisneros Guevara, Jul 23 2011

(n+1)*(10*n-7)*a(n)+2*n*(5*n-88)*a(n-1) -4*(25*n-22)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 07 2012

From Ilya Gutkovskiy, Jan 20 2017: (Start)

E.g.f.: x*(BesselI(0,2*x) + 2*BesselI(1,2*x) + BesselI(2,2*x))*exp(2*x).

a(n) ~ 4^n*sqrt(n)/sqrt(Pi).

Sum_{n>=1} 1/a(n) = Pi*(2*sqrt(3) + Pi)/18 = 1.152911143694148... (End)

MAPLE

with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Composition(n*2+1), size=n)), j=1..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 09 2007

a:=n->sum(sum(binomial(2*n, n)/(n+1), j=1..n), k=1..n): seq(a(n), n=0..22); # Zerinvary Lajos, May 09 2007

MATHEMATICA

Table[CatalanNumber[n]*n^2, {n, 0, 22}] (* Zerinvary Lajos, Jul 08 2009 *)

CoefficientList[Series[x (1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2)) / 2, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)

PROG

(MAGMA) [0] cat [((4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2))/2: n in [0..25]]; // Vincenzo Librandi, Jan 09 2015

(PARI) for(n=0, 25, print1(n*binomial(2*n, n-1), ", ")) \\ G. C. Greubel, Sep 01 2017

CROSSREFS

Cf. A253487.

Sequence in context: A216540 A026852 A317405 * A201190 A297089 A032208

Adjacent sequences:  A110606 A110607 A110608 * A110610 A110611 A110612

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jul 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 09:48 EDT 2019. Contains 324347 sequences. (Running on oeis4.)