login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159615 The slowest increasing sequence beginning with a(1)=2 such that a(n) and n are both odious or both not odious. 10
2, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 107, 109, 111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009.

FORMULA

For n>=1, a(n)=min{m>a(n-1): A010060(m)=A010060(n)}.

a(2n+1)=2a(n)+1.

a(2n)=3n+1+j,if n=2^k+j; a(2n)=(10n-4j)/3,if n=2^k+2^(k-1)+j, where 0<=j<=2^(k-1)-1.

EXAMPLE

If n=3, then k=1, j=0, therefore a(6)=(10*3-4*0)/3=10.

MAPLE

read("transforms") ; isA000069 := proc(n) option remember ; RETURN( type(wt(n), 'odd') ) ; end:

A159615 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA000069(a) = isA000069(n) then RETURN(a) ; fi; od: fi; end:

seq(A159615(n), n=1..120) ; # R. J. Mathar, Aug 17 2009

MATHEMATICA

odiousQ[n_] := OddQ[DigitCount[n, 2, 1]];

a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[FreeQ[Array[a, n-1], k] && odiousQ[n] && odiousQ[k] || !odiousQ[n] && !odiousQ[k], Return[k] ] ];

Array[a, 80] (* Jean-Fran├žois Alcover, Dec 10 2017 *)

CROSSREFS

Cf. A000069, A159559, A159560, A004760.

Sequence in context: A189629 A063113 A122825 * A026463 A243118 A289240

Adjacent sequences:  A159612 A159613 A159614 * A159616 A159617 A159618

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev, Apr 17 2009

EXTENSIONS

Edited and extended by R. J. Mathar, Aug 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 15:12 EDT 2020. Contains 336428 sequences. (Running on oeis4.)