login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023200 Primes p such that p + 4 is also prime. 150
3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429, 1447, 1483 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Smaller member p of cousin prime pairs (p, p+4).
A015913 contains the composite number 305635357, so it is different from both the present sequence and A029710. (305635357 is the only composite member of A015913 < 10^9.) - Jud McCranie, Jan 07 2001
Apart from the first term, all terms are of the form 6n + 1.
Complement of A067775 (primes p such that p + 4 is composite) with respect to A000040 (primes). With prime 2 also primes p such that q^2 + p is prime for some prime q (q = 3 if p = 2, q = 2 if p > 2). Subsequence of A232012. - Jaroslav Krizek, Nov 23 2013
Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely a(n)^(1/n) is a strictly decreasing function of n. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 24 2014
From Alonso del Arte, Jan 12 2019: (Start)
If p splits in Z[sqrt(-2)], p + 4 is an inert prime in that domain. Likewise, if p splits in Z[sqrt(2)], p + 4 is an inert prime in that domain.
The only way for p or p + 4 to split in both domains is if it is congruent to 1 modulo 24, in which case the other prime is inert in both domains.
For example, 3 = (1 - sqrt(-2))*(1 + sqrt(-2)) but is inert in Z[sqrt(2)], while 7 = (3 - sqrt(2))*(3 + sqrt(2)) but is inert in Z[sqrt(-2)]. And also 11 = (3 - sqrt(-2))*(3 + sqrt(-2)) but 15 is composite in Z or any quadratic integer ring.
And 97 = (5 - 6*sqrt(-2))*(5 + 6*sqrt(-2)) = (1 - 7*sqrt(2))*(1 + 7*sqrt(2)), but 101 is inert in both Z[sqrt(-2)] and Z[sqrt(2)]. (End)
LINKS
Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
H. J. Weber, A Sieve for Cousin Primes, arXiv:1204.3795v1 [math.NT], 2012.
Eric Weisstein's World of Mathematics, Cousin Primes
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
a(n) = A046132(n) - 4 = A087679(n) - 2.
a(n) >> n log^2 n via the Selberg sieve. - Charles R Greathouse IV, Nov 20 2016
MAPLE
A023200 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+4) do p := nextprime(p) ; end do: p ; end if; end proc: # R. J. Mathar, Sep 03 2011
MATHEMATICA
Select[Range[10^2], PrimeQ[#] && PrimeQ[# + 4] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Prime[Range[250]], PrimeQ[#+4]&] (* Harvey P. Dale, Oct 09 2023 *)
PROG
(PARI) print1(3); p=7; forprime(q=11, 1e3, if(q-p==4, print1(", "p)); p=q) \\ Charles R Greathouse IV, Mar 20 2013
(Magma) [p: p in PrimesUpTo(1500) | NextPrime(p)-p eq 4]; // Bruno Berselli, Apr 09 2013
(Haskell)
a023200 n = a023200_list !! (n-1)
a023200_list = filter ((== 1) . a010051') $
map (subtract 4) $ drop 2 a000040_list
-- Reinhard Zumkeller, Aug 01 2014
CROSSREFS
Exactly the same as A029710 except for the exclusion of 3.
Sequence in context: A342822 A154650 A015913 * A046136 A098044 A350591
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition modified by Vincenzo Librandi, Aug 02 2009
Definition revised by N. J. A. Sloane, Mar 05 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:58 EDT 2024. Contains 370952 sequences. (Running on oeis4.)