This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051679 Total number of even entries in first n rows of Pascal's triangle (the zeroth and first rows being 1; 1,1). 2
 0, 0, 1, 1, 4, 6, 9, 9, 16, 22, 29, 33, 42, 48, 55, 55, 70, 84, 99, 111, 128, 142, 157, 165, 186, 204, 223, 235, 256, 270, 285, 285, 316, 346, 377, 405, 438, 468, 499, 523, 560, 594, 629, 657, 694, 724, 755, 771, 816, 858, 901, 937, 982, 1020, 1059, 1083, 1132 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Sierpinski Sieve FORMULA a(0)=a(1)=0, a(2n) = 3a(n)+n(n-1)/2, a(2n+1) = 2a(n)+a(n+1)+n(n+1)/2. - Ralf Stephan, Oct 10 2003 n(n+3)/2 - A074330(n). - Ralf Stephan, Oct 10 2003 MATHEMATICA f[n_] := n + 1 - Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ] Accumulate[Count[#, _?EvenQ]&/@Table[Binomial[n, k], {n, 0, 60}, {k, 0, n}]] (* Harvey P. Dale, Nov 26 2014 *) PROG (PARI) a(n)=if(n<2, 0, if(n%2==0, 3*a(n/2)+n/4*(n/2-1), 2*a((n-1)/2)+a((n+1)/2)+((n-1)/4)*((n+1)/2))) CROSSREFS Cf. A006046. Partial sums of A048967. - Michel Marcus, Feb 16 2016 Sequence in context: A201660 A094115 A163297 * A010378 A166593 A196269 Adjacent sequences:  A051676 A051677 A051678 * A051680 A051681 A051682 KEYWORD easy,nice,nonn AUTHOR Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 01:09 EST 2018. Contains 317279 sequences. (Running on oeis4.)