

A006378


Prime self (or Colombian) numbers: primes not expressible as the sum of an integer and its digit sum.
(Formerly M2427)


10



3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, 2099, 2213, 2347, 2437, 2459, 2503, 2549, 2593, 2617, 2683, 2729, 2819, 2953, 3023, 3067
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
D. R. Kaprekar, Puzzles of the SelfNumbers. 311 Devlali Camp, Devlali, India, 1959.
D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
Jeffrey Shallit, personal communication c. 1999.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000
D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned]
B. Recamán, Problem E2408, Amer. Math. Monthly, 81 (1974), p. 407.
T. Trotter, Charlene Numbers
Index entries for Colombian or self numbers and related sequences


FORMULA

A107740(A049084(a(n))) = 0.


MATHEMATICA

With[{nn=3200}, Complement[Prime[Range[PrimePi[nn]]], Table[n+Total[ IntegerDigits[n]], {n, nn}]]] (* Harvey P. Dale, Dec 30 2011 *)


PROG

(Haskell)
a006378 n = a006378_list !! (n1)
a006378_list = map a000040 $ filter ((== 0) . a107740) [1..]
 Reinhard Zumkeller, Sep 27 2014


CROSSREFS

Cf. A003052, A007953, A047791, A048521, A062028.
Cf. A000040, A107740, A049084.
Subsequence of A247104.
Subsequence of A247104.
Sequence in context: A060273 A124077 A247104 * A162714 A002396 A029508
Adjacent sequences: A006375 A006376 A006377 * A006379 A006380 A006381


KEYWORD

nonn,base,nice,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Formula corrected by Reinhard Zumkeller, Sep 27 2014


STATUS

approved



