login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050249 Weakly prime numbers (changing any one decimal digit always produces a composite number). Also called digitally delicate primes. 16
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139, 5152507, 5564453, 5575259, 6173731, 6191371, 6236179, 6463267, 6712591, 7204777, 7469789, 7469797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Tao proved that this sequence is infinite. - T. D. Noe, Mar 01 2011

For the following values 5, 6, 7, 8, 9, 10 of k, the number of terms < 10^k in this sequence is 0, 5, 35, 334, 3167, 32323. - Jean-Marc Rebert, Nov 10 2015

LINKS

Klaus Brockhaus and Jean-Marc Rebert, Table of n, a(n) for n = 1..3167 (first 1317 terms from Klaus Brockhaus)

Jackson Hopper, Paul Pollack, Digitally delicate primes, arXiv:1510.03401 [math.NT], 2015.

Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.

Eric Weisstein's World of Mathematics, Weakly Prime

MATHEMATICA

fQ[n_] := Block[{d = IntegerDigits@ n, t = {}}, Do[AppendTo[t, FromDigits@ ReplacePart[d, i -> #] & /@ DeleteCases[Range[0, 9], x_ /; x == d[[i]]]], {i, Length@ d}]; ! AnyTrue[Flatten@ t, PrimeQ]] ; Select[Prime@ Range[10^5], fQ] (* Michael De Vlieger, Nov 10 2015, Version 10 *)

PROG

(MAGMA) IsA118118:=function(n); D:=Intseq(n); return forall{ <k, j>: k in [1..#D], j in [0..9] | j eq D[k] or not IsPrime(Seqint(S)) where S:=Insert(D, k, k, [j]) }; end function; [ p: p in PrimesUpTo(8000000) | IsA118118(p) ]; // Klaus Brockhaus, Feb 28 2011

(PARI) isokp(n) = {v = digits(n); for (k=1, #v, w = v; for (j=0, 9, if (j != v[k], w[k] = j; ntest = subst(Pol(w), x, 10); if (isprime(ntest), return(0)); ); ); ); return (1); }

lista(nn) = {forprime(p=2, nn, if (isokp(p), print1(p, ", ")); ); } \\ Michel Marcus, Dec 15 2015

CROSSREFS

Cf. A118118, A158124 (weakly primes), A158125 (weakly primes)

Cf. A137985 (analogous base 2 sequence), A186995 (weak primes in base n).

Sequence in context: A254843 A318787 A158124 * A224973 A328664 A328935

Adjacent sequences:  A050246 A050247 A050248 * A050250 A050251 A050252

KEYWORD

nonn,base

AUTHOR

Eric W. Weisstein

EXTENSIONS

Edited by Charles R Greathouse IV, Aug 02 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:31 EST 2019. Contains 329912 sequences. (Running on oeis4.)