

A050249


Weakly prime numbers (changing any one decimal digit always produces a composite number).


13



294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139, 5152507, 5564453, 5575259, 6173731, 6191371, 6236179, 6463267, 6712591, 7204777, 7469789, 7469797
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Tao proved that this sequence is infinite.  T. D. Noe, Mar 01 2011


LINKS

Klaus Brockhaus, Table of n, a(n) for n = 1..1317 (terms < 500000000)
Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405413.
Eric Weisstein's World of Mathematics, Weakly Prime


PROG

(MAGMA) IsA118118:=function(n); D:=Intseq(n); return forall{ <k, j>: k in [1..#D], j in [0..9]  j eq D[k] or not IsPrime(Seqint(S)) where S:=Insert(D, k, k, [j]) }; end function; [ p: p in PrimesUpTo(8000000)  IsA118118(p) ]; // Klaus Brockhaus, Feb 28 2011


CROSSREFS

Cf. A118118.
Cf. A137985 (analogous base 2 sequence), A186995 (weak primes in base n).
Sequence in context: A104328 A219318 A158124 * A224973 A182206 A178997
Adjacent sequences: A050246 A050247 A050248 * A050250 A050251 A050252


KEYWORD

nonn,base


AUTHOR

Eric W. Weisstein


EXTENSIONS

Edited by Charles R Greathouse IV, Aug 02 2010


STATUS

approved



