

A050251


Number of palindromic primes less than 10^n.


4



4, 5, 20, 20, 113, 113, 781, 781, 5953, 5953, 47995, 47995, 401696, 401696, 3438339, 3438339, 30483565, 30483565, 269577430, 269577430, 2427668363, 2427668363, 22170468927, 22170468927
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Every palindrome with an even number of digits is divisible by 11 and therefore is composite (not prime). Hence there is only one palindromic prime with an even number of digits, 11.  Martin Renner, Apr 15 2006


LINKS

Table of n, a(n) for n=0..23.
P. De Geest, World!Of Palindromic Primes, Page 1
Shyam Sunder Gupta, Palindromic Primes up to 10^19.
Shyam Sunder Gupta, Palindromic Primes up to 10^23.
Eric Weisstein's World of Mathematics, Palindromic Prime.
Index entries for sequences related to numbers of primes in various ranges


FORMULA

a(n) ~ A070199(n)/log(10^n) = 1/log(10^n)*Sum {k=1..n} 9*10^floor[(k1)/2].  Robert G. Wilson v, May 31 2009


PROG

(Python)
from __future__ import division
from sympy import isprime
def paloddgen(l, b=10): # generator of oddlength palindromes in base b of length <= 2*l
....if l > 0:
........yield 0
........for x in range(1, l+1):
............n = b**(x1)
............n2 = n*b
............for y in range(n, n2):
................k, m = y//b, 0
................while k >= b:
....................k, r = divmod(k, b)
....................m = b*m + r
................yield y*n + b*m + k
def A050251(n):
....if n == 0:
........return 4
....else:
........c = 1
........for i in paloddgen(n//2+1):
............if isprime(i):
................c += 1
........return c # Chai Wah Wu, Jan 05 2015


CROSSREFS

Partial sums of A016115.
Cf. A002113 (palindromes), A002385 (palindromic primes).
Sequence in context: A042835 A193964 A099897 * A125995 A080610 A047175
Adjacent sequences: A050248 A050249 A050250 * A050252 A050253 A050254


KEYWORD

nonn,hard,nice,base,more


AUTHOR

Eric W. Weisstein


EXTENSIONS

More terms from Patrick De Geest, Aug 01 1999
2 more terms from Shyam Sunder Gupta, Feb 12 2006
2 more terms from Shyam Sunder Gupta, Mar 13 2009
a(22)a(23) from Shyam Sunder Gupta, Oct 05 2013


STATUS

approved



