The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003575 Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3. 13
 1, 2, 7, 35, 214, 1523, 12349, 112052, 1120849, 12219767, 143942992, 1819256321, 24526654381, 350974470746, 5308470041299, 84554039118383, 1413794176669942, 24745966692370607, 452277149756692105, 8612255652371171012, 170517319084490074405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Muniru A Asiru, Table of n, a(n) for n = 0..210 Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33. M. M. Mangontarum, J. Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq. 18 (2015) 15.9.8. FORMULA E.g.f.: exp(x + (exp(3*x) - 1)/3). G.f.: 1/(1-x*Q(0)), where Q(k)= 1 + x/(1 - x + 3*x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013 a(n) = exp(-1/3) * Sum_{k>=0} (3*k + 1)^n / (3^k * k!). - Ilya Gutkovskiy, Apr 16 2020 MAPLE seq(coeff(series(n!*exp(z+(1/3)*exp(3*z)-(1/3)), z, n+1), z, n), n=0..30); # Muniru A Asiru, Feb 19 2019 MATHEMATICA With[{nn=20}, CoefficientList[Series[Exp[x+Exp[3x]/3-1/3], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 04 2019 *) Table[Sum[Binomial[n, k] * 3^k * BellB[k, 1/3], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *) PROG (PARI) x = 'x + O('x^30) ; Vec(serlaplace(exp(x + exp(3*x)/3 - 1/3))) \\ Michel Marcus, Feb 09 2018 (MAGMA) m:=30; c:=3; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 20 2019 (Sage) b=3; def A003575_list(prec):     P. = PowerSeriesRing(QQ, prec)     return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list() A003575_list(30) # G. C. Greubel, Feb 20 2019 CROSSREFS Cf. A000110 (b=1), A007405 (b=2), this sequence (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10). Sequence in context: A172511 A214461 A130458 * A043546 A307441 A260530 Adjacent sequences:  A003572 A003573 A003574 * A003576 A003577 A003578 KEYWORD nonn AUTHOR EXTENSIONS Name clarified by G. C. Greubel, Feb 20 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 19:26 EST 2020. Contains 338769 sequences. (Running on oeis4.)