This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171378 Zeros in a Pascal modulo two matrix:a(n)=(n+1)^2-A006046(n) 1
 0, 1, 4, 7, 14, 21, 30, 37, 52, 67, 84, 99, 120, 139, 160, 175, 206, 237, 270, 301, 338, 373, 410, 441, 486, 529, 574, 613, 662, 705, 750, 781, 844, 907, 972, 1035, 1104, 1171, 1240, 1303, 1380, 1455, 1532, 1603, 1684, 1759, 1836, 1899, 1992, 2083, 2176, 2263 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence is the relationship of holes to fractal by area of Sierpinski gasket modulo two matrices. The area ratio: a(n)/(n+1)^2 varies fractally while approaching a limit near 0.876581. LINKS Robert Price, Table of n, a(n) for n = 0..999 MATHEMATICA TableForm[Table[Table[Table[Mod[ Binomial[m, k], 2], {k, 0, n}], {m, 0, n}], {n, 0, 10}]] (*A006046*) Table[Sum[Sum[Mod[Binomial[m, k], 2], {k, 0, m}], {m, 0, n}], {n, 0, 30}] Table[(n + 1)^2 - Sum[Sum[Mod[Binomial[ m, k], 2], {k, 0, m}], {m, 0, n}], {n, 0, 100}] CROSSREFS Cf. A006046, A001316 Sequence in context: A115759 A157615 A188319 * A147478 A147372 A201272 Adjacent sequences:  A171375 A171376 A171377 * A171379 A171380 A171381 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Dec 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 22 05:36 EST 2017. Contains 295076 sequences.