login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006134 a(n) = Sum_{k=0..n} binomial(2*k,k).
(Formerly M2811)
44
1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66197, 250953, 956385, 3660541, 14061141, 54177741, 209295261, 810375651, 3143981871, 12219117171, 47564380971, 185410909791, 723668784231, 2827767747951, 11061198475551, 43308802158651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5). - N. J. A. Sloane, Jan 21 2009

T(n+1,1) from table A045912 of characteristic polynomial of negative Pascal matrix. - Michael Somos, Jul 24 2002

p divides a((p-3)/2) for p=11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167..=A097933. Also primes congruent to {1, 2, 3, 11} mod 12 or primes p such that 3 is a square mod p (excluding 2 and 3) A038874. - Alexander Adamchuk, Jul 05 2006

Partial sums of the even central binomial coefficients. For p prime >=5, a(p-1) = 1 or -1 (mod p) according as p = 1 or -1 (mod 3) (see Pan and Sun link). - David Callan, Nov 29 2007

a(n)=Sum_{ k=0..n } b(k)*binomial(n+k,k), where b(k)=0 for n-k == 2 (mod 3), b(k)=1 for n-k == 0 or 1 (mod 6), and b(k)=-1 for n-k== 3 or 4 (mod 6). - Alzhekeyev Ascar M, Jan 19 2012

a(n)=Sum_{ k=0..n-1 } c(k)*binomial(2n,k) + binomial(2n,n), where c(k)=0 for n-k == 0 (mod 3), c(k)=1 for n-k== 1 (mod 3), and c(k)=-1 for n-k==2 (mod 3). - Alzhekeyev Ascar M, Jan 19 2012

First column of triangle A187887. - Michel Marcus, Jun 23 2013

REFERENCES

M. Petkovsek et al., A=B, Peters, 1996, p. 22.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016.

W. F. Lunnon, The Pascal matrix, Fib. Quart. vol. 15 (1977) pp. 201-204.

Kim McInturff and Rob Pratt, Representations of a generating function, The College Mathematics Journal, 40 (2009), 294-296.

Hao Pan and Zhi-Wei Sun, A combinatorial identity with application to Catalan numbers, arXiv:math/0509648 [math.CO], 2005-2006.

Peter Paule, A proof of a conjecture of Knuth. Experiment. Math. 5(1996), no. 2, 83--89. MR1418955 (97k:33004)

Wikipedia, Pascal Matrix

FORMULA

a(n) = Sum[((2k)!/(k!)^2),{k,0,n}]. a(n) = A066796(n) + 1, n>0. - Alexander Adamchuk, Jul 05 2006

G.f.: 1/((1-x)*sqrt(1-4*x)).

Recurrence: (n+2)*a(n+2) - (5*n+8)*a(n+1) + 2*(2*n+3)*a(n) = 0. [Emanuele Munarini, Mar 15 2011]

a(n) = C(2n,n) * Sum_{k=0..2n} (-1)^k*trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n. E.g. a(2) = C(4,2)*(1/1 - 2/4 + 3/6 - 2/4 + 1/1) = 6*(3/2) = 9 ; a(3) = C(6,3)*(1/1 - 3/6 + 6/15 - 7/20 + 6/15 - 3/6 + 1/1) = 20*(29/20) = 29. - Paul D. Hanna, Aug 21 2007

a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012

G.f.: G(0)/2/(1-x), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

G.f.: G(0)/(1-x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2) - x*(4*k+2)*(4*k+3)/(x*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013

a(n) = Sum_{k = 0..n} binomial(n+1,k+1)*A002426(k). - Peter Bala, Oct 29 2015

a(n) = -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - i/sqrt(3). - Peter Luschny, Oct 29 2015

a(n) = binomial(2*n, n)*hypergeom([1,-n], [1/2-n], 1/4). - Peter Luschny, Mar 16 2016

EXAMPLE

1 + 3*x + 9*x^2 + 29*x^3 + 99*x^4 + 351*x^5 + 1275*x^6 + 4707*x^7 + 17577*x^8 + ...

MAPLE

A006134 := proc(n) sum(binomial(2*k, k), k=0..n); end;

a := n -> -binomial(2*(n+1), n+1)*hypergeom([1, n+3/2], [n+2], 4) - I/sqrt(3):

seq(simplify(a(n)), n=0..24); # Peter Luschny, Oct 29 2015

MATHEMATICA

Table[Sum[((2k)!/(k!)^2), {k, 0, n}], {n, 0, 50}] (* Alexander Adamchuk, Jul 05 2006 *)

a[ n_] := (4/3) Binomial[ 2 n, n] Hypergeometric2F1[ 1/2, 1, -n + 1/2, -1/3] (* Michael Somos, Jun 20 2012 *)

Accumulate[Table[Binomial[2n, n], {n, 0, 30}]] (* Harvey P. Dale, Jan 11 2015 *)

CoefficientList[Series[1/((1 - x) Sqrt[1 - 4 x]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 13 2015 *)

PROG

(MATLAB) n=10; x=pascal(n); trace(x)

(PARI) {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+1, n+1, i, j, -binomial( i+j-2, i-1))), 1))} /* Michael Somos, Jul 10 2002 */

(PARI) {a(n)=binomial(2*n, n)*sum(k=0, 2*n, (-1)^k*polcoeff((1+x+x^2)^n, k)/binomial(2*n, k))} - Paul D. Hanna, Aug 21 2007

(Maxima) makelist(sum(binomial(2*k, k), k, 0, n), n, 0, 12); \\ Emanuele Munarini, Mar 15 2011

(MAGMA) &cat[ [&+[ Binomial(2*k, k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 13 2015

(PARI) x='x+O('x^100); Vec(1/((1-x)*sqrt(1-4*x))) \\ Altug Alkan, Oct 29 2015

CROSSREFS

Cf. A000984, A066796, A097933, A038874, A132310.

Cf. A006135, A006136, A045912.

Differences give A000984.

Equals A066796 + 1.

Sequence in context: A151030 A066331 A099780 * A074526 A231291 A239116

Adjacent sequences:  A006131 A006132 A006133 * A006135 A006136 A006137

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Simpler definition from Alexander Adamchuk, Jul 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 04:27 EST 2016. Contains 278902 sequences.