From M. F. Hasler, Jun 23 2019:
a(1) = 2 = 1 + product of the first 0 primes (i.e., the empty product = 1).
a(2) = 3 = 1 + 2 = 1 + product of the first prime (= 2).
a(3) = 7 = 1 + 2*3 = 1 + product of the first two primes.
a(4) = 31 = 1 + 2*3*5 = 1 + product of the first three primes.
a(5) = 211 = 1 + 2*3*5*7 = 1 + product of the first four primes.
a(6) = 2311 = 1 + 2*3*5*7*11 = 1 + product of the first five primes.
Then the product of the first 6, 7, ..., 9 or 10 primes does not yield a primorial prime, the next one is:
a(7) = 200560490131 = 1 + 2*3*5*7*11*13*17*19*23*29*31 = 1 + product of the first eleven primes,
and so on. See A014545 = (0, 1, 2, 3, 4, 5, 11, 75, 171, 172, ...) for the k's that yield a term. (End)
