OFFSET
1,5
COMMENTS
Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019.
V. Kotesovec, Non-attacking chess pieces
Index entries for linear recurrences with constant coefficients, signature (7, -17, 7, 43, -77, 11, 99, -99, -11, 77, -43, -7, 17, -7, 1).
FORMULA
a(n) = n^10/120 - 2*n^9/9 + 95*n^8/36 - 183*n^7/10 + 14663*n^6/180 - 1201*n^5/5 + 16753*n^4/36 - 25364*n^3/45 + 68293*n^2/180 - 12781*n/120 + (n^3/2 - 6*n^2 + 39*n/2 - 61/4)*floor(n/2).
G.f.: -x^5*(1899*x^9 + 16515*x^8 + 60512*x^7 + 116784*x^6 + 137646*x^5 + 98222*x^4 + 41688*x^3 + 9608*x^2 + 943*x + 23)/((x-1)^11*(x+1)^4).
MATHEMATICA
Rest@ CoefficientList[Series[-x^5*(1899 x^9 + 16515 x^8 + 60512 x^7 + 116784 x^6 + 137646 x^5 + 98222 x^4 + 41688 x^3 + 9608 x^2 + 943 x + 23)/((x - 1)^11*(x + 1)^4), {x, 0, 27}], x] (* Michael De Vlieger, Aug 19 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 22 2011
STATUS
approved