login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077939
Expansion of 1/(1 - 2*x - x^2 - x^3).
16
1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, 148724, 378773, 964666, 2456829, 6257097, 15935689, 40585304, 103363394, 263247781, 670444260, 1707499695, 4348691431, 11075326817, 28206844760, 71837707768, 182957587113, 465959726754
OFFSET
0,2
COMMENTS
These coefficients are called the Tripell numbers by Bravo et al. - Rigoberto Florez, Jan 23 2020
LINKS
Jhon Jairo Bravo, Maribel Diaz, and José Luis Ramirez, The 2-adic and 3-adic valuation of the Tripell sequence and an application, Turk J Math, (2020) 44: 131-141.
Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
FORMULA
a(n) = abs(A077986(n)) = A077849(n) - A077849(n-1) = |A077922(n)| + |A077922(n-1)| = Sum_{k=0..n} A077997(k). - Ralf Stephan, Feb 02 2004
a(n) = Sum_{m=1..n+1} Sum_(k=0..n-m+1} (Sum_{j=0..k} binomial(j,n-m-3*k+2*j+1) *binomial(k,j))*binomial(m+k-1,m-1). - Vladimir Kruchinin, Oct 11 2011
G.f. for sequence with 1 prepended: 1/(1 - Sum_{k>=0} x*(x+x^2+x^3)^k). - Joerg Arndt, Sep 30 2012
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1- x*(4*k+2 + x+x^2)/(x*(4*k+4 + x+x^2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2*a(n-1) + a(n-2) + a(n-3), where a(0) = 0, a(1)=1, a(2)=2. - Rigoberto Florez, Jan 23 2020
MAPLE
m:=30; S:=series(1/(1-2*x-x^2-x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, 1}, {1, 2, 5}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
a[n_]:=a[n]=2a[n-1]+a[n-2]+a[n-3]; a[0]=0; a[1]=1; a[2]=2; Table[a[n], {n, 30}] (* Rigoberto Florez, Jan 23 2020 *)
PROG
(Maxima)
a(n):=sum(sum((sum(binomial(j, n-m-3*k+2*j+1)*binomial(k, j), j, 0, k))* binomial(m+k-1, m-1), k, 0, n-m+1), m, 1, n+1); /* Vladimir Kruchinin, Oct 11 2011 */
(PARI) Vec(1/(1-2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) I:=[1, 2, 5]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 05 2020
(Sage)
def A077939_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return (1/(1-2*x-x^2-x^3)).list()
A077939_list(30) # G. C. Greubel, Feb 05 2020
(GAP) a:=[1, 2, 5];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 05 2020
CROSSREFS
Sequence in context: A007443 A120925 A086588 * A077986 A007020 A080888
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved