login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077939 Expansion of 1/(1-2*x-x^2-x^3). 9
1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, 148724, 378773, 964666, 2456829, 6257097, 15935689, 40585304, 103363394, 263247781, 670444260, 1707499695, 4348691431, 11075326817, 28206844760, 71837707768, 182957587113, 465959726754 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..29.

Index to sequences with linear recurrences with constant coefficients, signature (2,1,1)

FORMULA

a(n) = abs(A077986(n)) = A077849(n)-A077849(n-1) = |A077922(n)|+|A077922(n-1)| = sum(k=0, n, A077997(k)). - Ralf Stephan, Feb 02 2004

a(n)=sum(m=1..n+1, sum(k=0..n-m+1, (sum(j=0..k, binomial(j,n-m-3*k+2*j+1)*binomial(k,j)))* binomial(m+k-1,m-1))). [From Vladimir Kruchinin, Oct 11 2011]

G.f. for sequence with 1 prepended: 1/( 1 - sum(k>=0,  x*(x+x^2+x^3)^k ) ). [Joerg Arndt, Sep 30 2012]

G.f.: Q(0)/2, where Q(k) = 1 + 1/(1- x*(4*k+2 + x+x^2)/(x*(4*k+4 + x+x^2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013

MATHEMATICA

CoefficientList[Series[1/(1-2*x-x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, 1}, {1, 2, 5}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)

PROG

(Maxima)

a(n):=sum(sum((sum(binomial(j, n-m-3*k+2*j+1)*binomial(k, j), j, 0, k))* binomial(m+k-1, m-1), k, 0, n-m+1), m, 1, n+1); [From Vladimir Kruchinin, Oct 11 2011]

(PARI) Vec(1/(1-2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

CROSSREFS

Sequence in context: A120925 A086588 * A077986 A007020 A080888 A052988

Adjacent sequences:  A077936 A077937 A077938 * A077940 A077941 A077942

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 07:18 EST 2014. Contains 252181 sequences.