OFFSET
1,1
COMMENTS
Equals row sums of triangle A164738. Example: a(4) = 33 = sum of terms in row 4 of triangle A164738: (2, 3, 5, 3, 5, 7, 5, 3). - Gary W. Adamson, Aug 23 2009
It might have been more natural to define this sequence with offset 0, which would also make the formula simpler. Then a(n) would be the first term of the sequence obtained from the primes by applying n times the operation "take sums of successive terms", Ts(k) = s(k)+s(k+1). - M. F. Hasler, Jun 02 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..3000 (terms 1..1000 from Vincenzo Librandi)
Vaclav Kotesovec, Plot of a(n) / (2^n * n * log(n)) for n = 2..20000
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*prime(k). - M. F. Hasler, Jun 02 2017
G.f.: Sum_{k>=1} prime(k)*x^k/(1 - x)^k. - Ilya Gutkovskiy, Apr 21 2019
MAPLE
a:=n->add(binomial(n-1, k-1)*ithprime(k), k=1..n): seq(a(n), n=1..30); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
Module[{nmax=50, b}, b=Prime[Range[nmax]]; Join[{2}, Table[First[b=ListConvolve[{1, 1}, b]], nmax-1]]] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) A007443(n)=sum(k=1, n, binomial(n-1, k-1)*prime(k)) \\ M. F. Hasler, Jun 02 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, May 21 2010
STATUS
approved