login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007443
Binomial transform of primes.
(Formerly M1436)
13
2, 5, 13, 33, 83, 205, 495, 1169, 2707, 6169, 13889, 30993, 68701, 151469, 332349, 725837, 1577751, 3413221, 7349029, 15751187, 33616925, 71475193, 151466705, 320072415, 674721797, 1419327223, 2979993519, 6245693407, 13068049163
OFFSET
1,1
COMMENTS
Equals row sums of triangle A164738. Example: a(4) = 33 = sum of terms in row 4 of triangle A164738: (2, 3, 5, 3, 5, 7, 5, 3). - Gary W. Adamson, Aug 23 2009
It might have been more natural to define this sequence with offset 0, which would also make the formula simpler. Then a(n) would be the first term of the sequence obtained from the primes by applying n times the operation "take sums of successive terms", Ts(k) = s(k)+s(k+1). - M. F. Hasler, Jun 02 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..3000 (terms 1..1000 from Vincenzo Librandi)
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*prime(k). - M. F. Hasler, Jun 02 2017
G.f.: Sum_{k>=1} prime(k)*x^k/(1 - x)^k. - Ilya Gutkovskiy, Apr 21 2019
MAPLE
a:=n->add(binomial(n-1, k-1)*ithprime(k), k=1..n): seq(a(n), n=1..30); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
A007443[n_]:=Sum[Binomial[n-1, k-1]Prime[k], {k, n}]; Array[A007443, 50] (* or *)
Module[{nmax=50, b}, b=Prime[Range[nmax]]; Join[{2}, Table[First[b=ListConvolve[{1, 1}, b]], nmax-1]]] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) A007443(n)=sum(k=1, n, binomial(n-1, k-1)*prime(k)) \\ M. F. Hasler, Jun 02 2017
CROSSREFS
Cf. A164738.
Cf. A001043, A096277, A096278, A096279. See A287915 for indices of primes.
First differences give A178167.
Sequence in context: A292507 A307465 A116703 * A120925 A086588 A077939
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, May 21 2010
STATUS
approved