login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007443 Binomial transform of primes.
(Formerly M1436)
12
2, 5, 13, 33, 83, 205, 495, 1169, 2707, 6169, 13889, 30993, 68701, 151469, 332349, 725837, 1577751, 3413221, 7349029, 15751187, 33616925, 71475193, 151466705, 320072415, 674721797, 1419327223, 2979993519, 6245693407, 13068049163 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Equals row sums of triangle A164738. Example: a(4) = 33 = sum of terms in row 4 of triangle A164738: (2, 3, 5, 3, 5, 7, 5, 3). - Gary W. Adamson, Aug 23 2009

It might have been more natural to define this sequence with offset 0, which would also make the formula simpler. Then a(n) would be the first term of the sequence obtained from the primes by applying n times the operation "take sums of successive terms", Ts(k) = s(k)+s(k+1). - M. F. Hasler, Jun 02 2017

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..3000 (terms 1..1000 from Vincenzo Librandi)

N. J. A. Sloane, Transforms

FORMULA

a(n) = Sum_{k=1..n} binomial(n-1,k-1)*prime(k). - M. F. Hasler, Jun 02 2017

G.f.: Sum_{k>=1} prime(k)*x^k/(1 - x)^k. - Ilya Gutkovskiy, Apr 21 2019

MAPLE

a:=n->add(binomial(n-1, k-1)*ithprime(k), k=1..n): seq(a(n), n=1..30); # Muniru A Asiru, Oct 23 2018

PROG

(PARI) A007443(n)=sum(k=1, n, binomial(n-1, k-1)*prime(k)) \\ M. F. Hasler, Jun 02 2017

CROSSREFS

Cf. A164738. - Gary W. Adamson, Aug 23 2009

Cf. A001043, A096277, A096278, A096279. See A287915 for indices of primes.

First differences give A178167.

Sequence in context: A292507 A307465 A116703 * A120925 A086588 A077939

Adjacent sequences:  A007440 A007441 A007442 * A007444 A007445 A007446

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladimir Joseph Stephan Orlovsky, May 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 07:15 EDT 2020. Contains 334767 sequences. (Running on oeis4.)