The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007442 Inverse binomial transform of primes. (Formerly M0065) 7
 2, 1, 1, -1, 3, -9, 23, -53, 115, -237, 457, -801, 1213, -1389, 445, 3667, -15081, 41335, -95059, 195769, -370803, 652463, -1063359, 1570205, -1961755, 1560269, 1401991, -11023119, 36000427, -93408425, 214275735, -450374071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the (n-1)-st difference of the first n primes. Although the magnitude of the terms appears to grow exponentially, a plot shows that the sequence a(n)/2^n has quite a bit of structure. See A082594 for an interesting application. - T. D. Noe, May 09 2003 Graph this divided by A122803 using plot2! - Franklin T. Adams-Watters From Robert G. Wilson v, Jan 28 2020: (Start) a(n) is odd for all n>1 and a(2n) is negative for all n>1. As opposed to A331573, there are terms where abs(a(n)) >= abs(a(n+1)), n: 1, 2, 3, 14, 25, 26, 38, 46, 47, 97, 111, 175, 176, 289, 357, 476, 497, 673, ..., . Terms by index which are prime: 1, 5, 7, 8, 11, 13, 40, 106, 132, 154, 478, 647, 1576, 2067, 2656, 3837, 5158, 6985, ..., . (End) REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..3321 (first 1000 from Franklin T. Adams-Watters) T. D. Noe, Plot of A007442 N. J. A. Sloane, Transforms Eric Weisstein's World of Mathematics, Binomial Transform FORMULA a(n) = Sum_{k=0..n-1} (-1)^(n-k-1) binomial(n-1, k) prime(k+1). a(n) = A095195(n,n-1). - Alois P. Heinz, Sep 25 2013 G.f.: Sum_{k>=1} prime(k)*x^k/(1 + x)^k. - Ilya Gutkovskiy, Apr 23 2019 a(n) =~ -(-1)^n*10^(3n/10). - Robert G. Wilson v, Jan 28 2020 EXAMPLE a(4) = 7 - 3*5 + 3*3 - 2 = -1. MATHEMATICA Diff[lst_List] := Table[lst[[i + 1]] - lst[[i]], {i, Length[lst] - 1}]; n=1000; dt = Prime[Range[n]]; a = Range[n]; a[[1]] = 2; Do[dt = Diff[dt]; a[[i]] = dt[[1]], {i, 2, n}]; a u = Table[Prime[Range[k]], {k, 1, 100}]; Flatten[Table[Differences[u[[k]], k - 1], {k, 1, 100}]] (* Clark Kimberling, May 15 2015 *) PROG (PARI) vector(50, n, sum(k=0, n-1, (-1)^(n-k-1)*binomial(n-1, k)*prime(k+1))) \\ Altug Alkan, Oct 17 2015 CROSSREFS Cf. A007443, A082594, A095195. Sequence in context: A279453 A054252 A240472 * A054772 A294616 A085384 Adjacent sequences:  A007439 A007440 A007441 * A007443 A007444 A007445 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 13:01 EDT 2020. Contains 334827 sequences. (Running on oeis4.)