The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054252 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones under action of dihedral group of the square D_4. 23
 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 16, 23, 23, 16, 8, 3, 1, 1, 3, 21, 77, 252, 567, 1051, 1465, 1674, 1465, 1051, 567, 252, 77, 21, 3, 1, 1, 6, 49, 319, 1666, 6814, 22475, 60645, 136080, 256585, 410170, 559014, 652048, 652048, 559014, 410170, 256585, 136080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS From Geoffrey Critzer, Feb 19 2013: (Start) Cycle indices for n=2,3,4,5 respectively are: (1/8)(s^4 + 2*s^2*s + 3*s^2 + 2*s). (1/8)(s^9 + 4*s^3*s^3 + ss^4 + 2*s*s^2). (1/8)(s^16 + 2*s^4*s^6 + 2*s^4 + 3*s^8). (1/8)(s^25 + 4*s^5*s^10 + 2*s*s^6 + s*s^12). (End) Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X n square under all symmetry operations of the square. - Christopher Hunt Gribble, Feb 17 2014 From Wolfdieter Lang, Oct 03 2016: (Start) The cycle index G(n) for a square n X n grid with squares coming in two colors with k squares of one color is for the D_4 group (with 8 elements R(90)^j, S R(90)^j, j=0..3)   (s^(n^2) + s^(n^2/2) +2*s^(n^2/4))/8 + (s^(n^2/2) + s^n*s^((n^2-n)/2))/4 if n is even,   s*((s^(n^2-1) + s^((n^2-1)/2) + 2*s^((n^2-1)/4))/8) + s^n*s^(n*(n-1)/2)/2 if n is odd. See the above comment by Geoffrey Critzer for n=2..5. The figure counting series is c(x) = 1 + x for coloring, say black and white. Therefore the counting series is C(n,x) = G(n) with substitution s[2^j] = c(x^(2*j)) = 1 + x^(2^j) for j=0,1,2. Row n gives the coefficients of C(n,x) in rising (or falling) order.  This follows from Pólya's counting theorem.  See the Harary-Palmer reference, p. 42, eq. (2.4.6), and eq. (2.2.11) with n=4 on p. 37 for the cycle index of D_4. (End) REFERENCES F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6), p. 37, (2.2.11). LINKS Heinrich Ludwig, Rows n = 0..16, flattened EXAMPLE T(3,2) = 8 because there are 8 nonisomorphic 3 X 3 binary matrices with two ones under action of D_4:   [0 0 0] [0 0 0] [0 0 0] [0 0 0]   [0 0 0] [0 0 0] [0 0 1] [0 0 1]   [0 1 1] [1 0 1] [0 1 0] [1 0 0] ---------------------------------   [0 0 0] [0 0 0] [0 0 0] [0 0 1]   [0 1 0] [0 1 0] [1 0 1] [0 0 0]   [0 0 1] [0 1 0] [0 0 0] [1 0 0] Triangle T(n,k) begins: 1; 1, 1; 1, 1, 2,  1,  1; 1, 3, 8, 16, 23, 23, 16, 8, 3, 1; MATHEMATICA (* As a triangle *) Prepend[Prepend[Table[CoefficientList[CycleIndexPolynomial[ GraphData[{"Grid", {n, n}}, "AutomorphismGroup"], Table[Subscript[s, i], {i, 1, 4}]] /. Table[Subscript[s, i] -> 1 + x^i, {i, 1, 4}], x], {n, 2, 10}], {1, 1}], {1}] // Grid (* Geoffrey Critzer, Aug 09 2016 *) PROG (Sage) def T(n, k):     if n == 0 or k == 0 or k == n*n:         return 1     grid = graphs.Grid2dGraph(n, n)     m = grid.automorphism_group().cycle_index().expand(2, 'b, w')     b, w = m.variables()     return m.coefficient({b: k, w: n*n-k}) [T(n, k) for n in range(6) for k in range(n*n + 1)] # Freddy Barrera, Nov 23 2018 CROSSREFS Cf. A014409, A019318, A054247 (row sums), A054772. Sequence in context: A196017 A251660 A279453 * A240472 A007442 A054772 Adjacent sequences:  A054249 A054250 A054251 * A054253 A054254 A054255 KEYWORD easy,nonn,tabf AUTHOR Vladeta Jovovic, May 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 12:54 EDT 2020. Contains 335398 sequences. (Running on oeis4.)