

A007446


Exponentiation of e.g.f. for primes.
(Formerly M1785)


3



1, 2, 7, 31, 162, 973, 6539, 48410, 390097, 3389877, 31534538, 312151125, 3271508959, 36149187780, 419604275375, 5100408982825, 64743452239424, 856157851884881, 11768914560546973, 167841252874889898
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Contribution from Tilman Neumann, Oct 05 2008: (Start)
a(n) is also given by
 substituting the primes (A000040) into (the simplest) Faa di Bruno's formula, or
 the complete Bell polynomial of the first n prime arguments, or
 computing n.th moments from the first n primes as cumulants
The examples show that the coefficients of the prime power products are just A036040/A080575 (these are just rearrangements of the same coefficients). Moreover, the prime products of the additional terms span the whole space of natural numbers, thus what we see here is a reordering of the natural numbers! (End)


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..19.


EXAMPLE

Contribution from Tilman Neumann, Oct 05 2008: (Start)
Let p_i denote the i.th prime (A000040). Then
a(1)=2 = 1*p_1
a(2)=7 = 1*p_2 + 1*p_1^2
a(3)=31 = 1*p_3 + 3*p_2*p_1 + 1*p_1^3
a(4)=162= 1*p_4 + 4*p_3*p_1 + 3*p_2^2 + 6*p_2*p_1^2 + 1*p_1^4
a(5)=973= 1*p_5 + 5*p_4*p_1 + 10*p_3*p_2 + 10*p_3*p_1^2 + 15*p_2^2*p_1 + 10*p_2*p_1^3 + 1*p_1^5
(End)


PROG

Contribution from Tilman Neumann, Oct 05 2008: (Start)
(MuPAD)
completeBellMatrix := proc(x, n)
// x  vector x[1]...x[m], m>=n
local i, j, M;
begin
M:=matrix(n, n): // zeroinitialized
for i from 1 to n1 do
M[i, i+1]:=1:
end_for:
for i from 1 to n do
for j from 1 to i do
M[i, j] := binomial(i1, j1)*x[ij+1]:
end_for:
end_for:
return (M):
end_proc:
completeBellPoly := proc(x, n)
begin
return (linalg::det(completeBellMatrix(x, n))):
end_proc:
x:=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]:
for i from 1 to 10 do print(i, completeBellPoly(x, i)): end_for:
(End)


CROSSREFS

Cf. A036040, A080575. [From Tilman Neumann, Oct 05 2008]
Sequence in context: A030966 A009132 A125275 * A227119 A002872 A105216
Adjacent sequences: A007443 A007444 A007445 * A007447 A007448 A007449


KEYWORD

easy,nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



