login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022096
Fibonacci sequence beginning 1, 6.
19
1, 6, 7, 13, 20, 33, 53, 86, 139, 225, 364, 589, 953, 1542, 2495, 4037, 6532, 10569, 17101, 27670, 44771, 72441, 117212, 189653, 306865, 496518, 803383, 1299901, 2103284, 3403185, 5506469, 8909654, 14416123, 23325777, 37741900, 61067677, 98809577, 159877254
OFFSET
0,2
COMMENTS
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(6;n-1-k,k), n>=1, with a(-1)=5. These are the sums of the SW-NE diagonals in P(6;n,k), the (6,1) Pascal triangle A093563. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also sums of SW-NE diagonals in (1,5)-Pascal triangle A096940.
Subsequence of primes: 7, 13, 53, 139, 953, 44771, 189653, 1494692464747, ... - R. J. Mathar, Aug 09 2012
a(n) is the sum of seven consecutive Fibonacci numbers. a(n) = F(n-4) + F(n-3) + F(n-2) + F(n-1) + F(n) + F(n+1) + F(n+2), where F(n)=A000045(n), extended so that F(-1)=1, F(-2)=-1, F(-3)=2, and F(-4)=-3. - Graeme McRae, Apr 24 2014
LINKS
Jia Huang, Hecke algebras of simply-laced type with independent parameters, arXiv:1902.11139 [math.RT], 2019.
Tanya Khovanova, Recursive Sequences
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
J. L. Ramírez and G. N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
FORMULA
a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=6.
G.f.: (1+5*x)/(1-x-x^2).
a(n) = 5*Fibonacci(n+2) - 4*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-11 + sqrt(5)) + (1 + sqrt(5))^n*(11 + sqrt(5))))/sqrt(5). - Herbert Kociemba, Dec 18 2011
a(n) = Fibonacci(n+3) - Fibonacci(n-4). - Greg Dresden and Sam Neale, Mar 08 2022
MATHEMATICA
CoefficientList[Series[(1 + 5 x)/(1 - x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 25 2014 *)
LinearRecurrence[{1, 1}, {1, 6}, 40] (* Harvey P. Dale, Aug 07 2023 *)
PROG
(Magma) a0:=1; a1:=6; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
(PARI) a(n)=([0, 1; 1, 1]^n*[1; 6])[1, 1] \\ Charles R Greathouse IV, Jan 29 2016
CROSSREFS
a(n) = A101220(5, 0, n+1).
a(n) = A109754(5, n+1).
Cf. A000045.
Sequence in context: A154662 A277567 A070398 * A041175 A041074 A041749
KEYWORD
nonn,easy
EXTENSIONS
Spelling correction by Jason G. Wurtzel, Aug 22 2010
STATUS
approved