This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093563 (6,1)-Pascal triangle. 16
 1, 6, 1, 6, 7, 1, 6, 13, 8, 1, 6, 19, 21, 9, 1, 6, 25, 40, 30, 10, 1, 6, 31, 65, 70, 40, 11, 1, 6, 37, 96, 135, 110, 51, 12, 1, 6, 43, 133, 231, 245, 161, 63, 13, 1, 6, 49, 176, 364, 476, 406, 224, 76, 14, 1, 6, 55, 225, 540, 840, 882, 630, 300, 90, 15, 1, 6, 61, 280, 765, 1380 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The array F(6;n,m) gives in the columns m >= 1 the figurate numbers based on A016921, including the octagonal numbers A000567, (see the W. Lang link). This is the sixth member, d=6, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-2, for d=1..5. This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+5*z)/(1-(1+x)*z). The SW-NE diagonals give A022096(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 5. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013 REFERENCES Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen. Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122. LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened Wolfdieter Lang, First 10 rows and array of figurate numbers FORMULA a(n, m)=F(6;n-m, m) for 0<= m <= n, otherwise 0, with F(6;0, 0)=1, F(6;n, 0)=6 if n>=1 and F(6;n, m):= (6*n+m)*binomial(n+m-1, m-1)/m if m>=1. Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=6 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1). G.f. column m (without leading zeros): (1+5*x)/(1-x)^(m+1), m>=0. T(n, k) = C(n, k) + 5*C(n-1, k). - Philippe Deléham, Aug 28 2005 exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(6 + 13*x + 8*x^2/2! + x^3/3!) = 6 + 19*x + 40*x^2/2! + 70*x^3/3! + 110*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014 EXAMPLE Triangle begins   1;   6,  1;   6,  7,  1;   6, 13,  8,  1;   6, 19, 21,  9,  1;   6, 25, 40, 30, 10,  1;   ... MATHEMATICA lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *) PROG (Haskell) a093563 n k = a093563_tabl !! n !! k a093563_row n = a093563_tabl !! n a093563_tabl = [1] : iterate                (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1] -- Reinhard Zumkeller, Aug 31 2014 CROSSREFS Row sums: A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else. Cf. A007318, A093564 (d=7), A228196, A228576. The column sequences give for m=1..9: A016921, A000567 (octagonal), A002414, A002419, A051843, A027810, A034265, A054487, A055848. Sequence in context: A292862 A070472 A151784 * A081775 A156163 A301817 Adjacent sequences:  A093560 A093561 A093562 * A093564 A093565 A093566 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Apr 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 03:39 EDT 2018. Contains 313964 sequences. (Running on oeis4.)