login
A277567
Numbers k such that k/6^m == 1 (mod 6), where 6^m is the greatest power of 6 that divides k.
5
1, 6, 7, 13, 19, 25, 31, 36, 37, 42, 43, 49, 55, 61, 67, 73, 78, 79, 85, 91, 97, 103, 109, 114, 115, 121, 127, 133, 139, 145, 150, 151, 157, 163, 169, 175, 181, 186, 187, 193, 199, 205, 211, 216, 217, 222, 223, 229, 235, 241, 247, 252, 253, 258, 259, 265
OFFSET
1,2
COMMENTS
Positions of 1 in A277544. Numbers having 1 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.
LINKS
FORMULA
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
MATHEMATICA
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_] := Flatten[Position[a[b], d]]
p[6, 1] (* A277567 *)
p[6, 2] (* A277568 *)
p[6, 3] (* A277569 *)
p[6, 4] (* A277570 *)
p[6, 5] (* A277571 *)
Select[Range[300], Mod[#/6^IntegerExponent[#, 6], 6]==1&] (* Harvey P. Dale, Sep 27 2023 *)
PROG
(PARI) is(n)=(n/6^valuation(n, 6))%6==1 \\ Charles R Greathouse IV, Nov 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 01 2016
STATUS
approved