

A070398


a(n) = 6^n mod 29.


1



1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16, 9, 25, 5, 1, 6, 7, 13, 20, 4, 24, 28, 23, 22, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,1). [From R. J. Mathar, Apr 20 2010]


FORMULA

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n1)  a(n7) + a(n8).
G.f.: ( 15*xx^26*x^37*x^4+16*x^520*x^65*x^7 ) / ( (x1)*(1+x)*(x^6x^5+x^4x^3+x^2x+1) ). (End)
a(n) = a(n14).  G. C. Greubel, Mar 18 2016


MATHEMATICA

PowerMod[6, Range[0, 50], 29] (* G. C. Greubel, Mar 18 2016 *)


PROG

(Sage) [power_mod(6, n, 29)for n in xrange(0, 81)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n) = lift(Mod(6, 29)^n); \\ Altug Alkan, Mar 18 2016


CROSSREFS

Sequence in context: A127020 A154662 A277567 * A022096 A041175 A041074
Adjacent sequences: A070395 A070396 A070397 * A070399 A070400 A070401


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, May 12 2002


STATUS

approved



