This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022097 Fibonacci sequence beginning 1, 7. 14
 1, 7, 8, 15, 23, 38, 61, 99, 160, 259, 419, 678, 1097, 1775, 2872, 4647, 7519, 12166, 19685, 31851, 51536, 83387, 134923, 218310, 353233, 571543, 924776, 1496319, 2421095, 3917414, 6338509, 10255923, 16594432, 26850355, 43444787, 70295142, 113739929 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(7;n-1-k,k) with n>=1, a(-1)=6. These are the SW-NE diagonals in P(7;n,k), the (7,1) Pascal triangle A093564. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (perhaps the same as A001175). - R. J. Mathar, Aug 10 2012 LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1,1). FORMULA a(n) = a(n-1) + a(n-2) for n>=2, a(0)=1, a(1)=7, a(-1):=6. G.f.: (1+6*x)/(1-x-x^2). Row sums of triangle A131778 starting (1, 7, 8, 15, 23, 38,...). - Gary W. Adamson, Jul 14 2007 a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-13 + sqrt(5)) + (1 + sqrt(5))^n*(13 + sqrt(5))))/sqrt(5). - Herbert Kociemba a(n) = 6*A000045(n) + A000045(n+1). - R. J. Mathar, Aug 10 2012 a(n) = 7*A000045(n) + A000045(n-1). - Paolo P. Lava, May 18 2015 a(n) = 8*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017 MAPLE with(combinat):  P:=proc(q) local n; for n from 0 to q do print(7*fibonacci(n)+fibonacci(n-1)); od; end: P(10^2); # Paolo P. Lava, May 18 2015 MATHEMATICA First /@ NestList[{Last@ #, Total@ #} &, {1, 7}, 36] (* or *) CoefficientList[Series[(1 + 6 x)/(1 - x - x^2), {x, 0, 36}], x] (* Michael De Vlieger, Feb 20 2017 *) LinearRecurrence[{1, 1}, {1, 7}, 40] (* Harvey P. Dale, May 17 2018 *) PROG (MAGMA) a0:=1; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013 (PARI) a(n)=([0, 1; 1, 1]^n*[1; 7])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016 CROSSREFS a(n) = A101220(6, 0, n+1) = A109754(6, n+1) = A118654(3, n). Cf. A000045, A131778. Sequence in context: A231390 A231458 A070424 * A041100 A129658 A041693 Adjacent sequences:  A022094 A022095 A022096 * A022098 A022099 A022100 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 02:41 EDT 2018. Contains 316405 sequences. (Running on oeis4.)