login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A129658
Numerators of the convergents of the continued fraction for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
15
0, 1, 0, 1, 7, 8, 15, 23, 38, 61, 343, 404, 747, 7127, 29255, 387442, 1579023, 1966465, 5511953, 150789196, 156301149, 4527221368, 4683522517, 13894266402, 32472055321, 111310432365, 255092920051, 1896960872722, 2152053792773
OFFSET
-2,5
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = [0; 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 9, 4, 13, 4, ...], the convergents of which are 0/1, 1/0, [0/1], 1/1, 7/8, 8/9, 15/17, 23/26, 38/43, 61/69, 343/388, 404/457, 747/845, 7127/8062, 29255/33093, 387442/438271, 1579023/1786177, ..., with brackets marking index 0. Those prior to index 0 are for initializing the recurrence.
MATHEMATICA
nmax = 100; cfrac = ContinuedFraction[4 Pi^3/(81 Sqrt[3]), nmax + 1]; Join[ {0, 1}, Numerator[ Table[ FromContinuedFraction[ Take[cfrac, j] ], {j, 1, nmax + 1} ] ] ]
KEYWORD
nonn,frac,easy
AUTHOR
Stuart Clary, Apr 30 2007
STATUS
approved