login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022095 Fibonacci sequence beginning 1, 5. 27
1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, 500, 809, 1309, 2118, 3427, 5545, 8972, 14517, 23489, 38006, 61495, 99501, 160996, 260497, 421493, 681990, 1103483, 1785473, 2888956, 4674429, 7563385, 12237814, 19801199, 32039013, 51840212, 83879225, 135719437 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(5;n-1-k,k), n>=1, with a(-1)=4. These are the sums of the SW-NE diagonals in P(5;n,k), the (5,1) Pascal triangle A093562. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also sums of the SW-NE diagonals in the (1,4)-Pascal triangle A095666.

Row sums of triangle A131776 starting (1, 5, 6, 11, 17, 28, ...). - Gary W. Adamson, Jul 14 2007

In general, for a Fibonacci sequence beginning with 1,b we have:

a(n) = (2^(-1-n)((1 - sqrt(5))^n*(1 + sqrt(5) - 2b)+(1 + sqrt(5))^n*(-1 + sqrt(5) + 2b)))/sqrt(5). - Herbert Kociemba, Dec 18 2011

Subsequence of primes: 5, 11, 17, 73, 191, 809, 421493, 1103483, ... . - R. J. Mathar, Aug 09 2012

Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 9, 60, ... (differs from A001175). - R. J. Mathar, Aug 10 2012

LINKS

Table of n, a(n) for n=0..37.

Tanya Khovanova, Recursive Sequences

José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.

José L. Ramírez, Gustavo N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).

Index entries for linear recurrences with constant coefficients, signature (1,1).

FORMULA

a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=5.

G.f.: (1+4*x)/(1-x-x^2).

a(n) = 4*Fibonacci(n) + Fibonacci(n+1), n>=1. - Zerinvary Lajos, Oct 05 2007, corrected by R. J. Mathar, Apr 07 2011

a(n-1) = ((1 + sqrt5)^n - (1 - sqrt5)^n)/(2^n*sqrt5)+ 2*((1 + sqrt5)^(n-1) - (1 - sqrt5)^(n-1))/(2^(n-2)*sqrt5). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009

a(n) = 4*Fibonacci(n+2) - 3*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010

a(n) = (L(n-2) + 8*L(n-1) + 4*L(n) + 2*L(n+1))/5 for the Lucas numbers L(n). - J. M. Bergot, Oct 22 2012

a(n) = ((2*sqrt(5) - 1)*(((1 + sqrt(5))/2)^(n+1)) + (2*sqrt(5) + 1)*(((1 - sqrt(5))/2)^(n+1)))/(sqrt(5)). - Bogart B. Strauss, Jul 19 2013

a(n) = 5*A000045(n) + A000045(n-1). - Paolo P. Lava, May 18 2015

MAPLE

with(combinat): a:= n-> 4*fibonacci(n)+fibonacci(n+1): seq(a(n), n=0..32); # Zerinvary Lajos, Oct 05 2007

MATHEMATICA

f[n_] := (LucasL[n - 2] + 8*LucasL[n - 1] + 4*LucasL[n] + 2*LucasL[n + 1])/5; Array[f, 38, 0] (* or *)

LinearRecurrence[{1, 1}, {1, 5}, 38] (* Robert G. Wilson v, Oct 22 2012 *)

PROG

(PARI) a(n)=fibonacci(n-1)+5*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011

(MAGMA) a0:=1; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013

CROSSREFS

a(n) = A101220(4, 0, n+1).

a(n) = A109754(4, n+1).

Cf. A000045, A131776.

Sequence in context: A070373 A231000 A274283 * A042531 A042839 A041373

Adjacent sequences:  A022092 A022093 A022094 * A022096 A022097 A022098

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 19:30 EDT 2017. Contains 284082 sequences.