This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022093 Fibonacci sequence beginning 0, 10. 1
 0, 10, 10, 20, 30, 50, 80, 130, 210, 340, 550, 890, 1440, 2330, 3770, 6100, 9870, 15970, 25840, 41810, 67650, 109460, 177110, 286570, 463680, 750250, 1213930, 1964180, 3178110, 5142290, 8320400, 13462690, 21783090, 35245780, 57028870, 92274650, 149303520, 241578170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1,1). FORMULA a(n) = 10*F(n) = F(n+4) + F(n+2) + F(n-2) + F(n-4) for n>3, where F=A000045. a(n) = round( (4*phi-2)*phi^n) for n>4. - Thomas Baruchel, Sep 08 2004 G.f.: 10*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008 a(n) = F(n+5) + F(n-5) - 5*F(n) for n>0. - Bruno Berselli, Dec 29 2016 a(n) = Lucas(n+3) + Lucas(n-3), where Lucas(-i) = (-1)^i*Lucas(i) for the negative indices. - Bruno Berselli, Jun 13 2017 MATHEMATICA LinearRecurrence[{1, 1}, {0, 10}, 40] (* Bruno Berselli, Dec 30 2016 *) Table[Fibonacci[n + 5] + Fibonacci[n - 5] - 5 Fibonacci[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[10 Fibonacci[n], {n, 0, 100}] (* Vincenzo Librandi, Dec 31 2016 *) PROG (MAGMA) [10*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016 CROSSREFS Cf. A000045. Sequence in context: A205724 A040091 A168461 * A076817 A324494 A200984 Adjacent sequences:  A022090 A022091 A022092 * A022094 A022095 A022096 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 22:19 EDT 2019. Contains 321382 sequences. (Running on oeis4.)