login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166073 Triangle read by rows: a(n,k)=number of permutations in S_n which avoid the pattern 123 and have exactly k descents. 2
1, 1, 1, 1, 0, 4, 1, 0, 2, 11, 1, 0, 0, 15, 26, 1, 0, 0, 5, 69, 57, 1, 0, 0, 0, 56, 252, 120, 1, 0, 0, 0, 14, 364, 804, 247, 1, 0, 0, 0, 0, 210, 1800, 2349, 502, 1, 0, 0, 0, 0, 42, 1770, 7515, 6455, 1013, 1, 0, 0, 0, 0, 0, 792, 11055, 27940, 16962, 2036, 1, 0, 0, 0, 0, 0, 132, 8217 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Also number of Dyck paths of semi-length n for which the number of valleys added to the number of triple falls is k.

Apparently deletion of zeros and row-reversal maps A166073 to A091156. - R. J. Mathar, Oct 08 2009

The trivariate o.g.f. G=G(t,s,x), where t marks triple falls, s marks valleys, and x marks semilength is given by G=1+x[1+xg+t(G-1-xg)]g, where g = s(G-1)+1. Letting t=s=y, yields the given o.g.f. - Emeric Deutsch, Nov 03 2009

Apparently a variant of A126222, zeros moved to the start of each row. [J. Gardiner, seqfan list, Aug 19 2010] [R. J. Mathar, Aug 30 2010]

LINKS

Table of n, a(n) for n=0..73.

M. Barnabei, F. Bonetti and M. Silimbani, The descent statistic on 123 avoiding permutations, Séminaire Lotharingien de Combinatoire, B63a (2010), 7 pp.

Dongsu Kim, Zhicong Lin, Refined restricted inversion sequences, arXiv:1706.07208 [math.CO], 2017.

FORMULA

O.g.f.: E(x,y)=(-1+2xy+2x^2y-2xy^2-4x^2y^2+2x^2y^3+Sqrt[1-4xy-4x^2y+4*x^2*y^2])/ (2xy^2(xy-1-x)).

EXAMPLE

For example, for n=4 and k=1 whe have the 2 permutations 3412 and 2413.

Triangle begins:

1

1

1,1

0,4,1

0,2,11,1

0,0,15,26,1

0,0,5,69,57,1

0,0,0,56,252,120,1

0,0,0,14,364,804,247,1

0,0,0,0,210,1800,2349,502,1

0,0,0,0,42,1770,7515,6455,1013,1

0,0,0,0,0,792,11055,27940,16962,2036,1

0,0,0,0,0,132,8217,57035,95458,43086,4083,1

0,0,0,0,0,0,3003,62062,257257,305812,106587,8178,1

0,0,0,0,0,0,429,37037,381381,1049685,931385,258153,16369,1

0,0,0,0,0,0,0,11440,328328,2022384,3962140,2723280,614520,32752,1

0,0,0,0,0,0,0,1430,163592,2341976,9591764,14051660,7699800,1441928,65519,1

0,0,0,0,0,0,0,0,43758,1665456,14275716,41666184,47352820,21167312,3342489, 131054,1

0,0,0,0,0,0,0,0,4862,712062,13527852,77161980,168567444,152915748,56818743, 7667883,262125,1

...

MAPLE

G := (-1+2*x*y+2*x^2*y-2*x*y^2-4*x^2*y^2+2*x^2*y^3+sqrt(1-4*x*y-4*x^2*y+4*x^2*y^2))/(2*x*y^2*(x*y-1-x)): Gser := simplify(series(G, x = 0, 17)): for n from 0 to 12 do P[n] := sort(expand(coeff(Gser, x, n))) end do: for n from 0 to 12 do seq(coeff(P[n], y, k), k = 0 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 30 2009

MATHEMATICA

E[x_, y_]:=(-1+2*x*y+2*x^2*y-2*x*y^2-4*x^2*y^2+2*x^2*y^3+Sqrt[1-4*x*y-4*x^2*y+4*x^2*y^2])/(2*x*y^2*(x*y-1-x))

CROSSREFS

Cf. A001263. Row sums given by A000108.

Cf. A091156, A126222.

Sequence in context: A062862 A206799 A084119 * A290724 A283879 A216178

Adjacent sequences:  A166070 A166071 A166072 * A166074 A166075 A166076

KEYWORD

nonn,tabf

AUTHOR

Matteo Silimbani (silimban(AT)dm.unibo.it), Oct 06 2009, Oct 08 2009

EXTENSIONS

Extended by Emeric Deutsch, Oct 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 10:38 EST 2017. Contains 294887 sequences.