login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126222 Triangle read by rows: T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) without red level steps on the x-axis, having length n and k level steps (0 <= k <= n). 4
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 2, 0, 11, 0, 1, 0, 15, 0, 26, 0, 1, 5, 0, 69, 0, 57, 0, 1, 0, 56, 0, 252, 0, 120, 0, 1, 14, 0, 364, 0, 804, 0, 247, 0, 1, 0, 210, 0, 1800, 0, 2349, 0, 502, 0, 1, 42, 0, 1770, 0, 7515, 0, 6455, 0, 1013, 0, 1, 0, 792, 0, 11055, 0, 27940, 0, 16962, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums are the Catalan numbers (A000108).

A166073 appears to be a variant of A126222 where zeros are sorted to the start of each row. - R. J. Mathar, Aug 21 2010

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

T(2n,0) = C(2n,n)/(n+1) (the Catalan numbers; A000108).

Sum_{k=0..n} k*T(n,k) = A126223(n).

G.f.: G = G(t,z) satisfies z(t + z - t^2*z)G^2 - G + 1 = 0.

EXAMPLE

T(3,1)=4 because we have BUD, UBD, URD and UDB, where U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0).

Triangle starts:

1

0,1

1,0,1

0,4,0,1

2,0,11,0,1

0,15,0,26,0,1

5,0,69,0,57,0,1

0,56,0,252,0,120,0,1

14,0,364,0,804,0,247,0,1

0,210,0,1800,0,2349,0,502,0,1

42,0,1770,0,7515,0,6455,0,1013,0,1

0,792,0,11055,0,27940,0,16962,0,2036,0,1

132,0,8217,0,57035,0,95458,0,43086,0,4083,0,1

0,3003,0,62062,0,257257,0,305812,0,106587,0,8178,0,1

429,0,37037,0,381381,0,1049685,0,931385,0,258153,0,16369,0,1

0,11440,0,328328,0,2022384,0,3962140,0,2723280,0,614520,0,32752,0,1

1430,0,163592,0,2341976,0,9591764,0,14051660,0,7699800,0,1441928,0,65519,0,1

0,43758,0,1665456,0,14275716,0,41666184,0,47352820,0,21167312,0,3342489,0,131054,0,1

4862,0,712062,0,13527852,0,77161980,0,168567444,0,152915748,0,56818743,0,7667883,0,262125,0,1

...

MAPLE

G:=(1-sqrt(1-4*z*t-4*z^2+4*z^2*t^2))/2/z/(t+z-t^2*z): Gser:=simplify(series(G, z=0, 15)): for n from 0 to 12 do P[n]:=sort(expand(coeff(Gser, z, n))) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form

# second Maple program:

b:= proc(x, y) option remember; `if`(y>x or y<0, 0,

      `if`(x=0, 1, expand(b(x-1, y)*`if`(y=0, 1, 2)*z+

       b(x-1, y+1) +b(x-1, y-1))))

    end:

T:= (n, k)-> coeff(b(n, 0), z, k):

seq(seq(T(n, k), k=0..n), n=0..15);  # Alois P. Heinz, May 20 2014

MATHEMATICA

b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y]*If[y == 0, 1, 2]*z + b[x-1, y+1] + b[x-1, y-1]]]]; T[n_, k_] := Coefficient[b[n, 0], z, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000108, A126223.

Sequence in context: A294583 A283675 A294653 * A071637 A141277 A198637

Adjacent sequences:  A126219 A126220 A126221 * A126223 A126224 A126225

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Dec 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.