The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084119 Decimal expansion of the Fibonacci binary number, Sum_{k>0} 1/2^F(k), where F(k) = A000045(k). 10
 1, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The Fibonacci binary number 1.41027879720... is known to be transcendental. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 D. Bailey et al., On the binary expansions of algebraic numbers, Journal de ThÃ©orie des Nombres de Bordeaux 16 (2004), 487-518. J. H. Loxton and A. van der Poorten, Arithmetic properties of certain functions in several variables III, Bulletin of the Australian Mathematical Society, Volume 16, Issue 01, February 1977, pp 15-47. J. Shallit and A. van der Poorten, A specialised continued fraction, Can. J. Math. 45 (1993), 1067-79. PROG (PARI) suminf(k=1, 1/2^fibonacci(k)) \\ This gives the Fibonacci binary number, not the sequence (PARI) default(realprecision, 20080); x=suminf(k=1, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b084119.txt", n, " ", d)); \\ CROSSREFS Cf. A010056, A079586, A006518. See A124091 for another version. Sequence in context: A096501 A062862 A206799 * A166073 A290724 A283879 Adjacent sequences:  A084116 A084117 A084118 * A084120 A084121 A084122 KEYWORD nonn,cons AUTHOR Ralf Stephan, May 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 16:58 EST 2021. Contains 340303 sequences. (Running on oeis4.)